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Abstract

Reinforcement Learning (RL) is a way to train artificial agents to autonomously
interact with the world. In practice however, RL still has limitations that prohibit the
deployment of RL agents in many real world settings. This is because RL takes long,
typically requires human oversight, and produces specialised agents that can behave
unexpected in unfamiliar situations. This thesis is motivated by the goal of making
RL agents more flexible, robust, and safe to deploy in the real world. We develop
agents capable of Fast Adaptation, i.e., agents that can learn new tasks efficiently.

To this end, we use Meta Reinforcement Learning (Meta-RL), where we teach
agents not only to act autonomously, but to learn autonomously. We propose
four novel Meta-RL methods based on the intuition that adapting fast can be
divided into “task inference“ (understanding the task) and “task solving” (solving
the task). We hypothesise that this split can simplify optimisation and thus improve
performance, and is more amenable to downstream tasks. To implement this, we
propose a context-based approach, where the agent conditions on a context that
represents its current knowledge about the task. The agent can then use this to
decide whether to learn more about the task, or try and solve it.

In Chapter 5, we use a deterministic context and establish that this can indeed
improve performance and adequately captures the task. In the subsequent chapters,
we then introduce Bayesian reasoning over the context, to enable decision-making
under task uncertainty. By combining Meta-RL, context-based learning, and
approximate variational inference, we develop methods to compute approximately
Bayes-optimal agents for single-agent settings (Chapter 6) and multi-agent settings
(Chapter 7). Finally, Chapter 8 addresses the challenge of meta-learning with sparse
rewards, which is an important setting for many real-world applications. We observe
that existing Meta-RL methods can fail entirely if rewards are sparse, and propose
a way to overcome this by encouraging the agent to explore during meta-training.
We conclude the thesis with a reflection on the work presented in the context of
current developments, and a discussion of open questions.

In summary, the contributions in this thesis significantly advance the field of Fast
Adaptation via Meta-RL. The agents develop in this thesis can adapt faster than
any previous methods across a variety of tasks, and we can compute approximately
Bayes-optimal policies for much more complex task distributions than previously
possible. We hope that this helps drive forward Meta-RL research and, in the long
term, using RL to address important real world challenges.
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1
Introduction

Artificial Intelligence (AI) plays an increasingly large role in our lives, from real-time

route planning, to shopping recommendations, to video game bots. In the future,

autonomous agents might even drive our cars, curate personalised treatment plans,

or support government policy-making. A general approach to solving these types of

problems is Reinforcement Learning (RL), where an agent learns to interact with

the world via trial-and-error. The agent’s goal is to accumulate as many rewards

as possible, taking both the short and long-term effects of its actions into account.

Decades of RL research, on topics ranging from policy gradients (Sutton et al., 1999;

Schulman et al., 2015a) to exploration (Thrun, 1992; Bellemare et al., 2016), have

enabled us to develop agents that play Go at super-human level (Silver et al., 2016),

navigate stratospheric balloons (Bellemare et al., 2020), or control robot hands to

manipulate objects with high dexterity (Andrychowicz et al., 2020).

Part of the reason that these agents can be trained to such high performance is

that in the above settings, we can control, predict, or simulate the impact of an

agent’s actions well. In most other real world settings, however, this is not the case,

and RL agents could behave in an unpredictable, undesired, or outright dangerous

way. To safely deploy RL agents in those settings, we still have a long way to go.

This thesis is motivated by the quest of enabling RL to develop agents that are

more flexible, robust, and safe to deploy in the real world.

1
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Figure 1.1: Simplified illustration of RL training. The agent learns to play the
video game Ms PacMan by repeatedly playing and learning from the game outcomes.
Over time, the agent improves until it eventually masters the game. This may take tens of
thousands of game plays. Humans, on the other hand, can pick up games like Ms PacMan
in a handful of trials by transferring knowledge and skills from other areas of life.

To understand how Reinforcement Learning is performed, consider the simplified

schematic in Figure 1.1 of how an RL agent learns to play the game Ms PacMan. At

the beginning, the agent will behave randomly, jitter back and forth, and lose the

game. Over time it becomes better by avoiding actions with negative consequences,

and reinforcing behaviour that results in positive game points. After up to tens of

thousands of games, the agent is proficient in Ms PcMan – and only Ms PacMan.

For a different game, we would have to train it from scratch.

This example illustrates how powerful, but also how brittle, RL agents can be.

The fact that a computer algorithm can learn a game like this on its own, by trial

and error and receiving game points, is spectacular. But it also has limitations, and

is far from how humans – or any intelligent species – learn. By contrast, it is slow:

many RL algorithms require millions or even billions of environment interactions to

learn, rendering them practically useless for real world settings unless high fidelity

simulators exist. Most algorithms also learn from scratch, starting with a random

behaviour policy and little domain knowledge. This makes them flexible, allowing

us to use the same algorithm across many applications. But it also prevents us

from training agents directly in the real world, where the consequences of random

behaviour could be disastrous. Lastly, RL algorithms tend to produce specialised

agents that cannot handle even the slightest deviations from what they have seen

during training. The real world is not as predictable as Ms PacMan, and an RL

agent would take forever to achieve meaningful capabilities.
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1.1 Autonomous Agents for the Real World

When using Reinforcement Learning to develop and deploy autonomous agents, we

can consider two ends of a spectrum: deploying fully-trained agents that have been

pre-trained (e.g., in simulation), or training them from scratch directly in the real

world. We discuss these options below, and use them to contextualise this thesis.

Deploying Fully Trained Agents In some cases, it is possible to pre-train RL

agents before letting them interact directly with the real world. One such case is if

we have simulators available to train our agents. The fact that we can let agents

practice in simulation for millions of steps before letting them interact with the real

world is part of the success story of AlphaGo (Silver et al., 2016), the RL agent

that beat the world’s strongest Go player in 2016. Simulators are also used in many

robotics applications (Peng et al., 2018; Du et al., 2021; Körber et al., 2021; Collins

et al., 2021), to train controllers before deploying them on real robots. More real

world examples where simulators are used include stratospheric balloon navigation

(Bellemare et al., 2020), thermal control in smart buildings (Gao et al., 2019), or

autonomous driving (Kiran et al., 2021). Another way to pre-train agents is to

not learn via interaction with an environment (i.e., a simulator or the real world),

but instead learn offline from a dataset (Levine, 2021; Hussein et al., 2017). For

example, the aforementioned algorithm AlphaGo (Silver et al., 2016) also learned

from human player data, and only a later variant could learn to master the game

entirely on its own (Silver et al., 2017). Other examples of using human data to

train RL agents are simulated humanoid football (Liu et al., 2021b), StarCraft II

(Vinyals et al., 2019), and autonomous driving (Seita, 2018).

However, deploying fully trained agents is not always feasible (e.g., if we do not

have access to simulators or real world data), or desirable (e.g., it may produce

agents that are overspecialised, and unpredictable if they encounter new situations).

In this case, we can consider training agents directly in the real world.
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Learning from Scratch in the Real World The alternative of training agents

directly in the real world comes with many requirements. First and foremost, it

should be safe. Research on AI Safety (Amodei et al., 2016) is concerned with

developing risk-sensitive agents (Mihatsch et al., 2002; Delétang et al., 2021),

robustness to distribution shift (Quiñonero-Candela et al., 2008; Li et al., 2011), or

preventing agents from collecting high rewards in unintended ways (Everitt et al.,

2016; Hadfield-Menell et al., 2017), to name a few. Moreover, learning in the real

world should happen within reasonable time, require limited human oversight, and be

resource and cost-efficient. If training a robot to bartend takes several months with

constant supervision and thousands of broken bottles and glasses, we would probably

not consider this a serious option. Strategies to overcome this and make RL more

efficient include integrating domain knowledge (Teng et al., 2014; Silva et al., 2019),

making use of natural language (Luketina et al., 2019; Mu et al., 2022), learning

from human preferences (Christiano et al., 2017; Griffith et al., 2013), or learning

from demonstrations (Hussein et al., 2017; Argall et al., 2009). To date, however,

these do not provide the full answer to training agents from scratch in the real

world, especially for safety-critical settings like autonomous driving or healthcare.

Continued Learning in the Real World Naturally, most practical solutions

will lie somewhere between deploying fully trained agents, and training agents from

scratch in the real world. This is already common practice in robotics, where

controllers are often pre-trained in simulation and then fine-tuned it in the real

world (Smith et al., 2021; Kolter et al., 2007; Julian et al., 2021). This, however,

typically requires controlled settings and human oversight, which is unfeasible in

many other applications. In general, we are far from a general and robust way to

deploy or train RL agents in our chaotic and ever-changing world. We need agents

to learn substantially faster than currently possible, ideally without the need for

constant human oversight and intervention. This thesis addresses key aspects of

these challenges using an approach called Meta Reinforcement Learning, where we

pre-train agents to not only act on their own, but learn on their own.
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1.2 Meta Reinforcement Learning

Central to this thesis is the idea of Meta-Learning, or Learning to Learn, which

allows for dramatically more efficient learning of new tasks. The idea of learning

to learn goes back to at least until 1987 (Schmidhuber, 1987; Thrun et al., 1998),

with renewed interest and research since about 2016, thanks to modern advances in

Deep Learning (for recent surveys see Hospedales et al., 2020; Huisman et al., 2021).

Unlike standard Machine Learning algorithms, a Meta-Learning algorithm does

not just learn to solve individual tasks – instead, it learns how to learn. In other

words, rather than inventing and implementing all components of an algorithm by

hand, we now learn some parts using a data-driven approach. This is a way to

include domain knowledge into the algorithm (Botvinick et al., 2019; Hessel et al.,

2019), and can be much easier than doing so by hand. In Meta Reinforcement

Learning (Meta-RL), the idea of learning to learn can be used to develop RL agents

that can learn efficiently and independently.

We illustrate the Meta-RL procedure in Figure 1.2. Contrary to standard RL

(Figure 1.1), we do not just optimise performance for a single task. In Meta-RL,

we optimise learning performance across different tasks. Learning performance

can be defined in several ways, such as the end performance after learning for a

fixed duration, or the time it takes for the agent to learn a task (see Section 3.2).

By repeatedly attempting to learn new tasks and evaluating learning performance

(horizontal axis in Figure 1.2), the agent gets better at learning (vertical axis).

Eventually, it can learn new tasks much faster than existing RL algorithms.

While much of the research in Meta-RL is motivated by the vision of real world

applications, many other exciting reasons exist – like scientific curiosity, the prospect

of discovering new RL algorithms (which may have consequences far beyond what

we can imagine today), and speeding up RL research itself. In this thesis, we

leverage Meta-RL for Fast Adaptation, where the goal is to develop agents that can

adapt efficiently to new tasks. Such an agent should learn a game like Ms PacMan

much faster than current RL algorithms, within just a handful of trials.
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Figure 1.2: Simplified illustration of Meta-RL training. The agent repeatedly
performs an entire learning procedure on different tasks, and learns from the provided
feedback on how well it learned (horizontal axis). This “learning performance” can be
measured, e.g., using the final performance or how long it took for the agent to master
the game. Over time, the agent gets better at learning (vertical axis), until it can pick up
entirely new games in a fraction of the time that a standard RL algorithm would take (see
Figure 1.1). This learning behaviour is much closer to the efficiency with which humans
learn video games like Ms PacMan.
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1.3 Contributions

This thesis studies the Meta Reinforcement Learning for Fast Adaptation problem

setting. We propose several Meta-Learning algorithms that allow us to meta-learn

agents that can adapt to new tasks faster compared to existing methods across a

wide range of tasks and settings. We hope that this helps drive forward Meta-RL

research and, in the long term, using RL to address important real world challenges.

Meta-RL for Fast Adaptation Many of the contributions in this thesis build on

the intuition that “picking up new tasks” can be split into the following two steps.

1. Task Inference: Understand the given task (e.g., in Ms PacMan this means

understanding the game dynamics like how the controls work, how the ghosts

move, and that coins give positive rewards).

2. Task Solving: Learn how to solve the task (e.g., in Ms PacMan this means

coming up with a strategy to win the game which should include walking

strategically to collect coins, while avoiding ghosts and walls).

We posit that in many settings, with enough meta-training on sufficiently many

similar tasks, the agent will be proficient at step (2): it has acquired enough skills

and understanding of the world in order to know how to solve tasks. Therefore, all

that is left to do when adapting to new tasks, is to infer what the task is (1).

Take the example of a house cleaning robot that has been trained on a variety

of houses. It will already know how to mop a floor and clean a window, but when

entering a new house, it has to learn about that house’s layout, size, and properties.

Another example is a poker-playing agent: when trained on sufficiently many and

diverse matches, the agent knows what strategies work against which opponents.

When deployed, it just has to figure out what the other players’ strategies are.

Most existing Meta-RL methods do not explicitly separate task inference from

task solving, but take a black-box approach where the agent implicitly does both.

We propose to make this split explicit, and use it to efficiently learn new tasks.
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Thesis Structure This thesis studies ways to split task inference and task solving

through the design of the model architecture (by representing tasks as a context

vector that the rest of the model conditions on), and the training procedure (by

specialising each model part using different objectives). The thesis consists of

three main parts.

Part I: Foundations The first part provides the background that is relevant

for the work in this thesis.

• Chapter 2 summarises the relevant RL background.

• Chapter 3 introduces and motivates in detail the Meta-RL for Fast Adap-

tation problem setting. We discuss how efficient learning depends on the

adaptation horizon (how much time the agent has to adapt to a task before

we evaluate it), and use this to formalise two learning objectives.

• Chapter 4 then presents the two main existing approaches to Fast Adaptation,

which we build on and compare to throughout the thesis: adapting with

gradients, and adapting with recurrent neural networks.

Part II: Methods In the main part of this thesis, we introduce four methods

for solving the Fast Adaptation problem setting.

• Chapter 5 starts out by looking at Supervised Learning, which allows us

to sidestep some of the additional challenges of RL, like exploration or long-

term credit assignment. We derive a gradient-based method, where the

model is comprised of a main part (that learns to solve the task) and an

input context vector (representing the task). Empirically we find that this

leads to improved performance, and opportunity for model introspection. To

conclude the chapter, we apply the method to the Few-Shot Adaptation

Reinforcement Learning setting, where the agent has a fixed budget of

environment interactions to learn before being evaluated. This work was

published at ICML 2019 (Zintgraf et al., 2019).



1. Introduction 9

• Chapter 6 considers the more challenging Online Adaptation setting, where

the agent has to perform well from the very first timestep when it attempts a

task. Since all rewards during learning count towards its performance, the

agent has to carefully balance exploration (gathering new information to infer

the task) and exploitation (using current knowledge to perform well). There

is a sweet spot when trading off these aspects, at which the agent learns

optimally. To achieve this, we introduce Bayesian reasoning over the context

vector. This allows us to compute approximately Bayes-optimal behaviour

for domains where this was previously not computationally feasible. This

work was published at ICLR 2020 (Zintgraf et al., 2020), and as an extended

version in JMLR (Zintgraf et al., 2021c).

• Chapter 7 looks at the multi-agent setting where the agent does not adapt

to changing environments or tasks, but rather to changing other agents that it

interacts with. Here, the agent’s own actions influence the other agents’ future

actions. Modelling this introduces additional challenges, such as tracking and

reasoning over the current states of mind of other agents. This work was

published as an extended abstract at AAMAS 2021 (Zintgraf et al., 2021a).

• Chapter 8 focuses on the additional challenge of having very sparse rewards.

Since many real world tasks are best described using sparse rewards, this

is an important problem setting. Solving these problems requires sufficient

exploration during meta-training, on a meta-level: the agent must collect data

from which it can meta-learn successfully. We show that most existing Meta-

RL methods fail when rewards are sparse, and propose a way to overcome

this. This work was published at ICLR 2021 (Zintgraf et al., 2021b).

Part III: Discussion We conclude the thesis with a reflection on the work

presented in the context of current developments, and a discussion of open questions.

This includes results previously published as Xiong et al. (2021) at the Workshop

on Meta-Learning at NeurIPS 2021.



10



Part I

Foundations

11





2
Reinforcement Learning Background

Contents
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . 13

2.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . 14
2.1.2 Solving MDPs . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Deep Learning Primer . . . . . . . . . . . . . . . . . . . 17
2.1.4 Deep Reinforcement Learning . . . . . . . . . . . . . . . 19
2.1.5 Partially Observable MDPs . . . . . . . . . . . . . . . . 21
2.1.6 The Exploration-Exploitation Trade-Off . . . . . . . . . 22

2.2 Bayesian Reinforcement Learning . . . . . . . . . . . . . 23
2.2.1 Bayes-Adaptive MDPs . . . . . . . . . . . . . . . . . . . 23
2.2.2 Comparison to Other Exploration Strategies . . . . . . 24

This chapter introduces the relevant background from Reinforcement Learning

and Bayesian RL. Where necessary, we provide more background in the respective

future chapters of the thesis.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a way to solve sequential decision making problems,

where an agent repeatedly interacts with an environment by taking actions, and

receiving observations and rewards in return. We summarise the concepts relevant

to the thesis here, and refer to Sutton et al. (2018) for a detailed introduction.

13



14 2.1. Reinforcement Learning

2.1.1 Markov Decision Processes

Most commonly, the RL problem setting is formalised as a Markov Decision Process

(MDP) (Bellman, 1966), expressed as a tuple M = (S,A, R, T0, T, γ,H), where we

call S a set of states, A a set of actions, R the reward function, T0 the initial state

distribution, T the transition function, γ a discount factor, and H the horizon.

Environment Dynamics An agent interacts with an MDP by starting out in an

initial state s0 ∈ S according to the initial state distribution T0(s=s0) : S → [0, 1].1

In a sequence of discrete timesteps t up to a horizon H ∈ N>0 ∪∞, the agent takes

actions at ∈ A, and transitions according to a probabilistic transition function

T (s = st+1|st, at) : S × A × S → [0, 1].2 This transition function is Markov,

i.e., the next state st+1 only depends on the previous state st and action at – it

does not depend on states s<t or actions a<t that lie further in the past. After

each transition, the agent receives a reward according to the reward function

R(rt+1|st, at, st+1) : S × A × S → R. Rewards are Markov as well. Throughout

the thesis, we consider finite MDPs with H ∈ N>0 and denote full trajectories

as τ = (s0, a0, r1, . . . , sH), also called a rollout or episode. Partial trajectories of

length t are denoted τ:t = (s0, a0, r1 . . . , st).

Maximising Returns The expected return R(τ) of an episode is defined as the

expected discounted sum of rewards, Ep(τ)[R(τ)] ≡ Ep(τ)[
∑H−1
t=0 γtR(rt+1|st, at, st+1)].

The discount factor γ ∈ [0, 1] determines how much the agent favours immediate

rewards over delayed ones. The goal in RL is to learn a probabilistic policy

π(at|st) : S × A → [0, 1] that maximises the expected return

J (π) = Ep(τ) [R(τ)] . (2.1)

Because the transitions and rewards are Markov, the policy can be Markov as well,

and condition its actions only on the current state.
1For ease of exposition, we assume that the sets S andA are discrete. An extension to continuous

state and action spaces can be achieved by replacing the probabilities with corresponding densities.
We encounter both discrete and continuous state and action spaces in this thesis.

2Henceforth T (s=st+1|st, at) is denoted T (st+1|st, at) and includes T0 for brevity.
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We generally do not know the transition function T or the reward function R upfront.

Hence, the agent has to learn via trial and error through environment interactions.

2.1.2 Solving MDPs

One way to learn a policy π(at|st) that maximises expected return is using policy

gradient algorithms, which often make additional use of value functions. We use

two such algorithms in this thesis, and therefore introduce the basic concepts of

policy gradients and value functions below.

Policy Gradients To learn a policy π, we can parameterise it with a parameter

θ, and follow the policy gradient ∇θJ(πθ) to find the θ that produces the highest

expected return. Using the policy gradient theorem (Sutton et al., 2000), the

policy gradient can be computed as

∇θJ(πθ) = ET,π [∇θ log πθ(τ)R(τ)] . (2.2)

A simple approach to estimate this objective is the REINFORCE algorithm

(Williams, 1992), which uses a single Monte Carlo estimate of Equation (2.2)

by rolling out the policy once. This estimate suffers from high variance, and many

variants to estimate the above objective have been proposed since. Many of these

make use of so-called value functions, which we introduce next.

Value Functions The value of a given state and policy is defined as

V π(s) = Ep(τ) [R(τ)|s0 = s] ,

i.e., the future expected return when following the policy π from a given state st.

We further define the value of a state-action pair as

Qπ(s, a) = Ep(τ) [R(τ)|s0 = s, a0 = a] ,

i.e., the expected return when starting in state s, taking action a, and following

the policy π thereafter.
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Value functions define an ordering over policies: π ≥ π′ if V π(s) ≥ V π(s) ∀s ∈ S.

There always exists at least one optimal policy π∗ (Puterman, 2014), which is

defined as a policy whose value is better or equal than that of any other policy

across all states, ∀s ∈ S, π ∈ Π : V π∗(s) ≥ V π(s). Here, Π denotes the set of all

possible policies. There can be multiple optimal policies, but they all share the

same optimal value function; V ∗(s) := maxπ V π(s) for the state value function, and

Q∗(s, a) := maxπQπ(s, a) for the state-action value function.

A useful property of value functions is that they satisfy a recursive relationship

known as the Bellman equations (Bellman, 1957),

V π(st) = Eπ,T [rt + γV π(st+1)] and (2.3)

Qπ(st, at) = Eπ,T [rt + γQπ(st+1, at+1)] . (2.4)

These are the basis for many algorithms that learn value functions. Further, the

Bellman equations allow us to estimate future returns as the sum of immediate

rewards (rt) and the expected future discounted returns bootstrapped from the value

functions (γV π(st+1) or γQπ(st+1, at+1)). This has lower variance than using Monte

Carlo rollouts, but is biased towards our current (possibly wrong) value estimates.

Learning Value Functions Learning value functions can be useful in many ways.

For example, if we learn the optimal state-action value function, we can derive

an optimal policy by choosing actions with maximal values. Alternatively, when

learning policies using policy gradients, we can use value functions for bootstrapping

returns or as a baseline (Williams, 1992) to reduce variance.

To learn a policy’s state value function, we often parameterise it with a parameter

ω and write Vω. Learning can be done via stochastic gradient descent on the squared

error between our current value estimate and a target estimate from samples,

LV F (Vω) = ET,π
[
(Vω(st)− V target

t )2
]
. (2.5)

The target value V target
t can be estimated using Monte Carlo rollouts, or using a

mix of environment samples and bootstrapped values as in Equation (2.3). In the

same way, the state-action value function Q can be learned.
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2.1.3 Deep Learning Primer

Most interesting RL problems have large or continuous state and action spaces,

which often means that we have to resort to function approximation to represent

policies or value functions. In Deep Reinforcement Learning (Deep RL), we use

deep neural networks to parameterise the policy πθ and value function Vω or Qω,

i.e., θ and ω denote the weights of deep neural networks. These are usually trained

using stochastic gradient ascent or descent. We refer the reader to Goodfellow et al.

(2016) for an introduction to Deep Learning, and briefly introduce three building

blocks from Deep Learning that are relevant to this thesis here: feedforward neural

networks, recurrent neural networks, and variational auto-encoders.

Feedforward Neural Networks One way to represent a function (e.g., policy

or value function) is using a fully connected feedforward neural network. Such a

network consists of several fully connected layers, each of which can be described as

z = g(Wx+ b), (2.6)

where x ∈ Rdx is an input vector, W ∈ Rdz×dx is the weight matrix, b ∈ Rdz a bias

vector, g a non-linear activation function, and z ∈ Rdz the output vector. For a

policy πθ(a|s), this neural network would take the state s as an input to the first

layer, and output an action a from the last layer (or a probability distributions

over actions, e.g., represented by a mean and variance).

If the states s have a specific structure, we might be able to take advantage

of this by using other network architectures. For images for example, we can

use convolutional neural networks, which learn feature extractors specific to visual

inputs (see Goodfellow et al. (2014) for an introduction). Important for this thesis

are recurrent neural networks (RNNs), which can be used to process sequential

data such as as natural language, music, or trajectories of agent-environment

interactions τ . We introduce these next.
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Recurrent Neural Networks Recurrent neural networks (RNNs) are deep

neural networks with a form of memory. RNNs have at least one recurrent layer,

that has – as the name suggests – some form of recurrence. There are different

mechanisms to implement this, with the most prominent ones being the Long

Short-Term Memory (LSTM, Hochreiter et al., 1997) or Gated Recurrent Unit

(GRU, Cho et al., 2014). We outline the mathematical formulation of GRUs here,

since we use these in our experiments. A GRU layer is initialised with a hidden

vector h0 = 0 = (0, . . . , 0) ∈ Rdh . For a sequence of layer inputs (x1, . . . , xt), at

timestep t ≥ 1, the GRU computes an output vector ht using

zt = gσ(Wzxt + Uzht−1 + bz), (2.7)

rt = gσ(Wrxt + Urht−1 + br), (2.8)

ĥt = gtanh(Wh + Uh(rt � ht−1) + bh), (2.9)

ht = (1− zt)� ht−1 + zt � ĥt, (2.10)

where gσ is the sigmoid activation function, gtanh the hyperbolic tangent activation

function, ĥ a candidate activation vector, zt the update gate vector, rt the reset

gate vector, and ht the output vector which is used in the next update. In this

thesis, we use RNNs to summarise trajectories τ:t of agent-environment interactions.

Variational Auto-Encoders An important building block for this thesis are

latent variable models (Bishop et al., 2006), optimised using the reparametrisation

trick which was introduced in the context of the variational auto-encoder (VAEs;

Kingma et al., 2014). We use these models in Chapters 6-8 to quantify an agent’s

uncertainty over what task it is meant to be performing. This uncertainty is then

taken into account when taking actions. We briefly summarise the standard VAE

setup here, and refer the reader to Kingma et al. (2014) for a thorough introduction.

VAEs consist of an encoder (a neural network qφ), a decoder (a neural network pψ),

and a loss function. In the standard case presented in Kingma et al. (2014), the

encoder takes as input a datapoint x ∈ Rdx (e.g., an image of a cat) and produces a
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distribution over a latent representation m ∈ Rdm (a vector representing a low-level

representation of the input with dm << dx). Usually this is implemented by the

encoder producing a mean and a variance vector, µm ∈ Rdm and σm ∈ Rdm , of a

diagonal Gaussian distribution N (m|µz, σzI), and we write qφ(m|x). The decoder

network, pψ, takes as input a latent representation m ∈ Rdm (sampled from the

probability distribution we just described), and produces an output x. This is also

called a reconstruction, and we generally want this to be as similar as possible to

the encoder input, which can be measured with the log-likelihood log pψ(x|m). To

train qφ and pψ, the VAE maximises the so-called Evidence Lower Bound (ELBO):

L(φ, ψ) = Eqφ(m|x) [log pψ(x|m)]−KL(qφ(m|x)||p(m)). (2.11)

The first term is the log-likelihood, that measures how well we reconstructed the

input (e.g., for images we can use negative pixel-wise mean squared errors). The

second term is the Kullback-Leibler divergence (KL divergence; Kullback, 1997),

which is a way to measure how similar two probability distributions are, defined as

KL(qφ(m|x)||p(m)) =
∫
m qφ(m|x) log qφ(m|x)

p(m) . The distribution p(x) is called a prior,

and often set to N (0, I). In the above equation, it acts as a regulariser.

When using VAEs in the context of this thesis, we consider the case where m is

a latent task description (e.g., representing a goal position; see Figure 3.1a), and

where pψ is a distribution over MDPs. We do not use the standard VAE setup like

here, but a sequential version (Fabius et al., 2015; Chung et al., 2015) adapted

to our problem setting, where datapoints x are agent trajectories τ:t of varying

length t. We get back to these and derive the ELBO terms for our proposed VAE

architecture in Chapters 6 and Chapter 7.

2.1.4 Deep Reinforcement Learning

Two Deep RL algorithms that we use in this thesis are Trust Region Policy

Optimisation (TRPO; used in Chapter 5; Schulman et al., 2015a) and Proximal

Policy Optimisation (PPO; used in Chapters 6-8; Schulman et al., 2017). We

introduce these here, and refer to Arulkumaran et al. (2017) for a survey on Deep RL.
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TRPO Trust-Region Policy Optimisation (Schulman et al., 2015a) maximises

the objective in Equation (2.1) subject to a “trust region constraint”, which

enforces that the distance between the old and the updated policy is small. This

distance is estimated using the KL divergence (Kullback, 1997) between the old and

the new policy, KL(πθ(.|s)||πθk(.|s)) = ∑
a∈A πθ(a|s) log πθ(a|s)

πθk (a|s) . The theoretical

TRPO update is

θk+1 = arg max
θ
L(θk, θ) (2.12)

s.t. Es∈πθk [KL(πθ(.|s)||πθk(.|s))] ≤ δ. (2.13)

Here, k is the number of times we have updated θ so far, and δ is a threshold for the

KL term. The idea is that this restriction avoids updates that change the policy too

much at one step, thereby reducing instability issues. Since the above constrained

optimisation problem is difficult to work with, Schulman et al. (2015a) propose an

approximate objective function. For details see the original paper.

PPO Proximal Policy Optimisation builds on similar intuition, but uses a clipped

surrogate objective which is easier to estimate and retains similar performance

empirically (Schulman et al., 2017). The overall objective is given by

LPPO(θ, ω) = ET,π
[
LCLIP (θ)− λ1L

V F (ω) + λ2S(πθ)(st)
]
. (2.14)

Here, LV F is the value function loss from Equation (2.5), S(πθ) is an entropy term

that encourages exploration, and λ1 and λ2 weigh off the different terms relative to

each other. The term LCLIP is a surrogate objective for the policy gradient, given by

LCLIP (θ) = Eπ,T [min(rtAt, clip(rt, 1− ε, 1 + ε)At)] , (2.15)

where rt(θ) = πθ(at|st)
πθold (at|st) is a probability ratio between the new and old policy,

At = Qt−Vt is the advantage function at timestep t, and ε is a hyperparameter that

influences how far the new policy can deviate from the old one. The expectations

are estimated per-timestep, using multiple trajectories collected with the current

policy. For more details we refer the reader to the original paper, or the source

code accompanying the work in this thesis.
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2.1.5 Partially Observable MDPs

In MDPs, transitions are Markov: the next state only depends on the previous state

and action, and the MDP can be solved by a policy π(at|st) that conditions only on

the current state st. The Markov assumption holds, e.g., for games like Ms PacMan.

For many real world problems however, this is an unrealistic assumption. In poker

for example, a player only sees their own hand and the cards on the table, but

playing well requires remembering played cards to reason about other players’

hands. In this case we say that the agent has access only to observations ot,

rather than the full environment state st. Partial observability also occurs when

an agent encounters new situations that it still has to learn about. It is therefore

an important concept for this thesis.

When the Markov assumption does not hold, we can formulate the problem as a

Partially Observable Markov Decision Process (POMDP) (Astrom, 1965; Kaelbling

et al., 1998). The optimal policy then has to either condition on the observed

history τ̂:t = (o0, a0, r1, . . . , ot), such that π(at|τ̂:t), or on its belief over the true

state bt ≡ p(s = st|τ̂:t), such that π(at|bt). The belief here is defined as the posterior

distribution over the current state given the history. If beliefs are available, the

POMDP can be reformulated into a Belief MDP (Cassandra et al., 1994), which

is the MDP formed by taking the posterior beliefs maintained by an agent in a

POMDP and reinterpreting them as Markov states. In practice, past trajectories

can be summarised using RNNs (Hausknecht et al., 2015; Zhu et al., 2017), by

remembering features of the past (McCallum, 1993), or by doing inference over the

possible latent states (Kaelbling et al., 1998; Igl et al., 2018).

While POMDPs are general and theoretically well justified, computing solutions

is often intractable and it is difficult to make general progress on them. A tangible

way forward is often to make use of additional structure, leading to a richer yet

feasible setting compared to standard MDPs. This is what Bayes-Adaptive Markov

Decision Processes (BAMDPs) do, where the environment state is fully observable,

but the task is unknown to the agent. BAMDPs are central to the Meta-RL methods

developed in the thesis, and are introduced in Section 2.2.
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2.1.6 The Exploration-Exploitation Trade-Off

The efficiency of learning in an RL setting often depends on how well the agent

trades off exploration and exploitation, and is therefore an important aspect in

the context of Fast Adaptation. We briefly discuss this trade-off here, and come

back to it throughout the thesis.

In Reinforcement Learning – in contrast to Supervised Learning – the agent

itself collects the data that it learns from. Training often alternates between a phase

of data collection and updating the policy or value function, until a stop criterion

is reached. When interacting with the environment, the agent therefore has to

choose how much to explore, and how much to exploit, given everything it has

learned so far. Exploration refers to taking information-seeking actions, that help

the agent gather data from which it can learn about the environment, and the short

and long-term consequences of its actions. Exploratory actions can be costly and

therefore sub-optimal in the short term, but may pay off in the long term, since the

agent learns more about its environment. Exploitation refers to acting greedily given

the agent’s current knowledge about which actions have the highest expected return.

Balancing exploration and exploitation carefully during learning is key to learning

efficiently. Early in training, the agent does not know much about its environment,

and should therefore explore more. Exploration can happen in many ways, such as

adding random noise (Sutton, 1995; Lillicrap et al., 2016) or using state-visitation

counts to explore under-visited states (Sutton, 1990; Bellemare et al., 2016). For a

recent survey on exploration in RL see Amin et al. (2021) and Yang et al. (2021).

As training progresses, the agent becomes more certain about which actions lead

to high returns, and should exploit that knowledge and explore less. If the agent

has learned the optimal value function or policy, it does not need to explore, but

can instead simply act greedily.

In Chapter 6-8 of this thesis we use task uncertainty to drive exploration, so

that the agent can learn new tasks efficiently. To this end, we build on concepts

from Bayesian Reinforcement Learning, which we introduce in the next section. We

come back to exploration in the context of Meta-RL in Chapter 3.
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2.2 Bayesian Reinforcement Learning

Bayesian Reinforcement Learning approaches quantify uncertainty (e.g., about states,

rewards, or tasks) to support action-selection. Bayesian RL is central to this thesis,

and we use it in Chapters 6-8 as a way for the agent to incorporate uncertainty about

the task when selecting actions. We refer the reader to Neal (2012) for a introduction

in Bayesian Learning, and Ghavamzadeh et al. (2015) for a review on Bayesian RL,

and focus this section on one of the central concepts from Bayesian RL that this

thesis builds on: Bayes-adaptive policies. Bayes-adaptive policies are interesting

because they optimally trade off exploration and exploitation during learning.

2.2.1 Bayes-Adaptive MDPs

When the MDP is unknown, optimal decision making has to trade off exploration

and exploitation when selecting actions (see Section 2.1.6. In principle, this can

be done by taking a Bayesian approach to RL formalised as a Bayes-Adaptive

MDP (BAMDP), the solution to which is a Bayes-optimal policy (Bellman, 1956;

Duff et al., 2002; Ghavamzadeh et al., 2015).

In the Bayesian formulation of RL, we assume that the transition and reward

functions are distributed according to a prior b0 = p(R, T ). The agent does not

have access to the true reward and transition function, but can maintain a belief

bt(R, T ) = p(R, T |τ:t),

which is the posterior over the MDP given the agent’s experience τ:t up until

the current timestep t.

To allow the agent to incorporate the task uncertainty into its decision-making,

this belief can be augmented to the state, resulting in hyper-states s+
t ∈ S+ = S×B,

where B is the belief space. Hyper-states transition according to

T+(s+
t+1|s+

t , at, rt) = T+(st+1, bt+1|st, at, rt, bt)

= T+(st+1|st, at, bt) T+(bt+1|st, at, rt, bt, st+1)

= Ebt [T (st+1|st, at)] δ(bt+1 = p(R, T |τ:t+1)),



24 2.2. Bayesian Reinforcement Learning

i.e., the new environment state st is the expected new state with respect to the

current posterior distribution of the transition function, and the belief is updated

deterministically according to Bayes rule. The reward function on hyper-states is

defined as the expected reward under the current posterior,

R+(s+
t , at, s

+
t+1) = R+(st, bt, at, st+1, bt+1) = Ebt+1 [R(st, at, st+1)] .

This results in a BAMDP M+ = (S+,A, R+, T+, T+
0 , γ,H

+) (Duff et al., 2002),

which is a special case of a belief MDP (Cassandra et al., 1994, see Section 2.1.5).

In an arbitrary belief MDP, the belief is over a hidden state that can change

over time. In a BAMDP, the belief is over the transition and reward functions,

which are constant for a given task. The agent’s objective is now to maximise

the expected return in the BAMDP,

J +(π) = Eb0,T
+
0 ,T

+,π

H+−1∑
t=0

γtR+(rt+1|s+
t , at, s

+
t+1)

 , (2.16)

i.e., maximise the expected return in an initially unknown environment, while

learning, within the horizon H+. How to trade off exploration and exploitation

optimally depends on how much time the agent has left (e.g., to decide whether

information-seeking actions are worth it). The BAMDP horizon H+ can be distinct

from the MDP horizon H, e.g., if we want the agent to act Bayes-optimal within

the first N MDP episodes, so H+= N×H.

While a Bayes-optimal policy can in principle be computed using the BAMDP

framework, this is unfortunately hopelessly intractable for all but the smallest

tasks. Existing methods are therefore restricted to small and discrete state and

action spaces (Asmuth et al., 2011; Guez et al., 2012, 2013), or a discrete set of

tasks (Brunskill, 2012; Poupart et al., 2006).

2.2.2 Comparison to Other Exploration Strategies

The Bayes-optimal agents we introduced in the previous section optimally trade off

exploration and exploitation when learning a new task. Computing them however

is often intractable, and in practice, other exploration strategies may be used.
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To illustrate how Bayes-optimal exploration works, we compare it to two other

strategies – posterior sampling and random exploration – using an example.

Posterior Sampling A common shortcut to Bayes-optimal exploration is to rely

instead on posterior sampling (Thompson, 1933; Strens, 2000; Osband et al., 2013).

Posterior sampling, which extends Thompson sampling (Thompson, 1933) from

bandits to MDPs, estimates a posterior distribution over MDPs, in the same spirit

as in a BAMDP. The difference lies in how this belief is used to select actions:

the posterior is used to periodically sample a single hypothesis MDP (e.g., at the

beginning of an episode), and the policy that is optimal for the sampled MDP is

followed subsequently. Planning is far more tractable since it is done on a regular

MDP, not a BAMDP. However, posterior sampling’s exploration can be highly

inefficient and far from Bayes-optimal. It might incur large penalties, especially

early in learning, and therefore typically has lower expected online return.

Random Exploration Posterior sampling still requires the agent to maintain a

belief over the tasks, which is intractable for complex domains. A much simpler

strategy is to do random exploration, such as ε-greedy (where the agent takes

an action sampled uniformly at random with probability ε > 0, and the greedy

action otherwise; Sutton, 1995) or adding noise to the predicted actions. Random

exploration can be very inefficient, but is often used in practice in Deep RL due to

its simplicity.

Many other exploration strategies that are more informed than random exploration,

and more feasible to compute than Bayes-optimal exploration or posterior sampling,

exist in the literature (Amin et al., 2021; Yang et al., 2021). These are mostly

developed for the standard RL setting, where an agent learns over up to millions of

environment interactions. Since we consider the Fast Adaptation problem setting

in this thesis, we therefore only compare Bayes-optimal, posterior sampling, and

random exploration in the following example.
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Example Consider the example of the Gridworld environment in Figure 2.1, where

the agent must navigate to an unknown goal located in the grey area (Fig 2.1a). To

maintain a posterior, the agent can uniformly assign non-zero probability to cells

where the goal could be, and zero to all other cells. A Bayes-optimal strategy searches

the set of goal positions that the posterior considers possible, until the goal is found

(Fig 2.1b). Posterior sampling samples a possible goal position, takes the shortest

route there, and then resamples a new goal from the updated posterior (Fig 2.1c).

Random exploration displays jittery behaviour, re-visiting states multiple times,

until it eventually reaches the goal (Fig 2.1d). When comparing these strategies

quantitatively by the expected return they achieve in each episode (Fig 2.1e), we

see that the Bayes-optimal agent performs best and matches optimal behaviour

from the second episode. We also see that posterior sampling is much less efficient,

which is because the agent’s uncertainty is not reduced optimally (e.g., states are

revisited unnecessarily). Random exploration performs poorly, as expected.

Most existing methods for computing Bayes-optimal agents are restricted to

small state and action spaces like this Gridworld. A key challenge is to learn

approximately Bayes-optimal policies in a tractable way. In Chapter 6 we return

to this Gridworld example, and propose a Meta-RL method that closely matches

the ground-truth Bayes-optimal behaviour in this Gridworld, and scales to more

complex environments.
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(a)
Environment

(b)
Bayes-Optimal

(c)
Posterior Sampling

(d)
Random Sampling

(e) Performance

Figure 2.1: Illustration of different exploration strategies. (a) Environment: The
agent starts at the bottom left and has to navigate to an unknown goal, located in the grey
area. (b) A Bayes-optimal agent systematically searches possible grid cells to find the goal,
shown in solid (past actions) and dashed (future actions) blue lines. A simplified posterior
is shown in the background in grey (p = 1/(number of possible goal positions left) of
containing the goal) and white (p = 0). (c) Posterior sampling, which repeatedly samples
a possible goal position (red squares) from the current posterior, takes the shortest
route to the sampled goal, and then updates its posterior. (e) Random sampling, which
chooses from all available actions uniform at random. (e) Average return over all possible
environments, over six episodes with 15 steps each (after which the agent is reset to the
starting position). The performance of any exploration strategy is bounded above by the
optimal behaviour (of a policy with access to the true goal position, see dashed line). The
Bayes-optimal agent matches this behaviour from the second episode, whereas posterior
sampling needs six rollouts. Random exploration (with optimal behaviour after the goal
has been found) takes much longer to find the goal.
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In the introduction we discussed how standard RL can be slow, learns from scratch

using random behaviour policies, and overspecialises in the limit, rendering it

impractical for many settings. To overcome this, we need RL agents that are

flexible, learn autonomously, and adapt quickly to new circumstances.

A promising approach to this is Meta Reinforcement Learning (Meta-RL), which

we briefly introduced in Section 1.2. In Meta-RL, instead of developing all parts of

RL algorithms ourselves, we automate some choices by learning them, which can be

an effective way of adding domain knowledge to the learning algorithm. We can do

so for any aspect of RL, such as meta-learning update rules (Oh et al., 2020; Bechtle

et al., 2020; Kirsch et al., 2022), reward functions (Zheng et al., 2018; Feng et al.,

2019; Zheng et al., 2020; Alet et al., 2020), or how to select hyperparameters on-the-

fly (Jaderberg et al., 2017; Xu et al., 2018b; Paul et al., 2019; Zahavy et al., 2020).
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In this thesis, we are interested in the “Fast Adaptation” setting: we want to

meta-learn agents that can adapt quickly to new tasks. Such an agent should be able

to adapt efficiently to different (albeit similar) tasks, within only a few environment

interactions. Below we give three motivating examples.

Robotics Robots are used across many economic sectors, but often a lot of work

goes into specialising them for their individual use cases, like automated recycling

(Chin et al., 2019), painting (Rola, 2007), or farming (Bakker et al., 2006). It

would be more time and cost-efficient if we develop more general-purpose robots,

that require only a small training session to specialise.

Video Game Bots Video game experiences are frequently enhanced by in-game

AI agents that interact, compete, or collaborate with human players (Yannakakis

et al., 2018). Ideally, we want those agents to adapt on-the-fly: to team up with a

human, or to adapt to an individual player’s ability in a competitive setting.

Assistive AI Technology Assistive AI is already used in products like tutoring

systems (Iglesias et al., 2009; Roijers et al., 2012), recommender systems (Afsar

et al., 2021; Portugal et al., 2018), or assistive technology for the blind (Lee et al.,

2019b; Massiceti et al., 2021). In the future, these can become more personalised

by learning about and incorporating an individual’s preferences.

In the following sections, we introduce the ingredients needed for meta-learning

how to adapt fast:

• A task distribution for meta-training. This represents the types of tasks

we want our agent to adapt to when deploying it at meta-test time.

• An objective function that captures the desired behaviour of the agent,

defined by how much time it has to learn a new task before being evaluated.

• A meta-training procedure to learn how to learn tasks from the given

task distribution as efficiently as possible.
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(a) 2D Navigation (b) Meta-World

Figure 3.1: Task distribution examples. (a): In this 2D navigation example, the
agent A has to learn to navigate to a goal x. The goal location is unknown to the agent,
placed on a unit circle around the agent’s start position. (b): Example tasks from the
Meta-World benchmark (Yu et al., 2019), which consist of 50 different types of tasks,
each of which itself is a distribution over different instances of the type of task.

3.1 Task Distribution

The task distribution provides the training environments for the agent, and defines

the types of tasks for which we want fast-adapting agents. Meta-learning allows

us to then translate this into an efficient learning algorithm, tailored to that task

distribution. The task distribution therefore is the main way of providing domain

knowledge about what types of tasks the agent can expect, and how to efficiently

learn them. Formally, the task distribution is given as a probability distribution

p(M) over MDPs (see Section 2.1). Across tasks, the reward and transition functions

can vary, but typically share some structure. Therefore we often express the task

distribution p(M) as p(R, T ), and sample an MDP from p(M) by sampling a reward

and transition function from p(R, T ). For a single sample Mi ∼ p(M), we use the

index i to denote an unknown task description (e.g., a goal position or language

instruction) or task ID. Two task distribution examples are shown in Figure 3.1.

Throughout this thesis, as is common in the Meta-RL literature, we assume

access to unlimited samples from p(M) for meta-training, and that the agent is

evaluated on samples from that same distribution at meta-test time. Handling

distribution shifts is a challenging open problem, as we discuss in Chapter 9.
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3.1.1 Decoupling Task Inference from Task Solving

In this thesis, we argue the following (see also Section 1.3):

In many cases, Fast Adaptation comes down to task inference. In this

case, this can – and should – be decoupled from task solving.

We argue that this split is possible in many real world settings, and is reflected in

existing Meta-RL benchmarks, as we establish in Chapters 5 and 6. Consider the

example in Figure 3.1a, where fast adaptation consists of identifying the goal position

(task inference), and then executing a policy that can repeatedly navigate there (task

solving). The connection to the exploration-exploitation trade-off (Section 2.1.6)

becomes apparent: the agent has to explore to infer the task, and then exploit this

knowledge to solve the task. This can be meta-learned by interacting with samples

from p(M). Similarly, in our earlier example of assistive AI technology, adapting

to different humans can be done by inferring the individual’s personal preferences,

and acting accordingly. This can be meta-learned as long as the meta-training

distribution includes a representative set of human preferences.

This paradigm is central to the methods developed in this thesis, and stands in

contrast to the majority of existing Meta-RL methods where the agent is a black-box

that has to do both. This black-box approach is used by two of the most prominent

algorithms, MAML (Finn et al., 2017a) and RL2 (Duan et al., 2016; Wang et al.,

2016), which we introduce in the next section and compare to throughout the thesis.

We find empirically that separating task inference and task solving often leads to

better performance and has useful properties like better interpretability (Chapters

5-7), and is amenable for downstream or auxiliary tasks (Chapter 8).

If the meta training and test distribution are not the same, the agent also has

to not only infer the task, but also pick up new skills in order to solve it. We do not

consider this setting in this thesis, but discuss it as part of future work in Chapter

9. We believe that even in this case, separating task inference and task solving

could be beneficial for efficient adaptation: e.g., it may allow the agent to determine

which part(s) it has to improve, and focus on them separately.
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3.2 Objectives for Fast Adaptation

We want to meta-learn how an agent can adapt fast when deployed in an initially

unknown task from p(M). In order for the agent to get better at learning over

time, we must define how to evaluate learning performance. To this end, we

have to consider what behaviour we want from the agent at test time – more

specifically, how much time we give it to learn the task, before evaluating it.

We distinguish two scenarios:

1. Few-Shot Adaptation: The agent has a fixed number of timesteps to

freely explore, and is evaluated afterwards. Only the rewards after this initial

exploration phase count towards its performance.

2. Online Adaptation: The agent has to perform well from the time it first

enters the environment. All rewards from the first timestep count towards its

performance, including all exploratory actions.

The Online Adaptation setting is often preferable for real world applications, where

we want agents to perform well from the moment they starts interacting with the

world. It also generally leads to agents that learn more efficiently, and is the main

focus of this thesis. It is, however, more challenging and we therefore consider

the Few-Shot Adaptation setting as a first step in Chapter 5, before turning to

the Online Adaptation setting in Chapters 6-8. We discuss the two objectives

and problem settings in the following.

3.2.1 Few-Shot Adaptation

In the Few-Shot Adaptation setting, the agent has some time to freely explore

and learn, before we want it to perform well. Take the example of a robot that

is being deployed in a new factory. We might be able to train it under human

supervision for a short time for its specific task, and only need it to perform

well and autonomously afterwards.
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The objective we want the agent to maximise in this case is

max
π

Ep(M)

ET,π
H+−1∑
t=He

rt

 , (3.1)

where He < H+ is the time we give the agent to freely explore and learn. Essentially,

the rewards during this initial phase are masked out by setting them to zero, r<He =0,

and the rewards only count for the timesteps t = (He, . . . , H+).1 The rewards

from the initial phase can still be used during learning, e.g., by doing gradient

updates with the data from the first He steps, using standard RL objectives. We

propose one such method in Chapter 5.

3.2.2 Online Adaptation

In the Online Adaptation setting, we want the agent to perform well from the

moment it starts interacting with its environment. This is the case in many

real world settings, where the agent could otherwise incur irreversible damage

to itself or others. Formally, we want the agent to maximise the online return

achieved during task-learning,

max
π

Ep(M)

ET,π
H+−1∑

t=0
rt

 . (3.2)

In this equation, all rewards that the agent receives, from the very first timestep of

learning, count. Any exploratory actions are included in the expected online return,

and should only be taken if they ultimately lead to high returns, in expectation,

within the horizon H+.

Maximising learning performance from the first timestep that the agent interacts

with its environment as in the equation above is exactly the objective in Bayes-

Adaptive MDPs that we introduced in Section 2.2.1. Optimal learning here can

therefore be formulated as learning in a BAMDP, and maximising the BAMDP

objective from Equation (2.16). We make use of this when developing Meta-RL

algorithms for Online Adaptation in Chapters 6 and 7.
1From now, we drop the discount factor in the objective function, since we only consider small

and finite horizons H+ and therefore usually set γ = 1.
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Figure 3.2: Illustration of the Online Adaptation setting. In this environment,
the agent must find a hidden treasure in high grass. Two possible strategies are to (s1)
search the grass for the treasure, or (s2) climb up the mountain, see the treasure, and
go there. The latter strategy is costly in the short term, since climbing the mountain
incurs a large penalty, but pays off since the agent reaches the treasure faster. Strategy
s2 therefore maximises the expected online return from Eq (3.2). If the agent was instead
maximising the few-shot adaptation Eq (3.1), and the training phase horizon He was long
enough to search the entire grass, it could learn to follow either strategy.

Since the concept of Online Adaptation and its connection to the exploration-

exploitation trade-off is central to this thesis, we illustrate this using an example,

shown in Figure 3.2. In this environment, the agent must find a treasure that

is hidden in high grass, for which it receives a high reward. The distribution of

tasks is induced by different treasure locations. Whenever the agent is set into

this environment, the treasure is at a new location and the agent therefore needs

to explore. For every step in the environment, the agent incurs a small penalty.

Climbing the nearby mountain incurs a large penalty per timestep.

One possible exploration strategy (denoted s1) is to search the grass until finding

the treasure. This however takes a long time, and the expected return is relatively

low at around 100, due to the accumulated penalties from the long search. A strategy

with a higher expected return (denoted s2) is to climb the mountain, from where the

agent can see the treasure, and then exploit that knowledge by going the treasure

directly. The cost of exploration is higher in the short term, since going up the

mountain incurs a large penalty, but pays off due to reaching to the treasure faster.

This strategy maximises Equation (3.2) with an expected return of around 600.2

2Estimates of the expected returns for strategies s1 and s2 are taken from the results in Sec 8.4.
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Meta-learning strategy s2 is challenging, because the rewards are sparse and

the large penalties of climbing the mountain discourage the agent to go there. In

fact, most existing Meta-RL methods only learn strategy s1 and fail to maximise

Equation (3.2). We come back to this environment in Chapter 8 and show how

encouraging the right type of exploration during meta-training can enable an agent

to meta-learn the optimal strategy, s2.

3.3 Meta-Training

During meta-training, our goal is to teach agents to adapt fast. This is typically done

by repeatedly sampling batches of tasks from p(M), and performing a small training

procedure on each of them, called the “inner loop” (see Figure 1.2). In each task, the

agent is given H+ environment interactions to learn. Inner-loop learning can, e.g.,

include gradient updates, or rolling out a recurrent neural network. The outcome

of each learning procedure is then evaluated, and the agent’s meta-parameters are

updated so as to maximise the expected learning success, i.e., Equation (3.2) or

(3.1). This update is also often called the “outer loop” or “meta-update”. The

exact split between which parameters are updated in the inner and outer loop

depends on the specific Meta-RL algorithm.

At meta-test time, we evaluate the agent on new tasks drawn from p(M), based

on the average return from Equation (3.1) or (3.2) it achieves across test tasks. An

agent that does well has meta-learned to efficiently explore and adapt. Throughout

the thesis, we assume that the test tasks come from the same distribution as the

training tasks. We discuss the challenging open problem of distribution shift in

Chapter 9.

The next section introduces the two main approaches in Meta-RL for Fast Adap-

tation, adapting with gradients and adapting with RNNs, and one prototypical

Meta-RL method per setting.
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Meta-Learning can be applied to any aspect of Machine Learning algorithms. We

can meta-learn algorithms or loss functions (Schmidhuber, 1987; Bengio et al., 1992;

Andrychowicz et al., 2016; Ravi et al., 2017; Houthooft et al., 2018; Bechtle et al.,

2020; Oh et al., 2020), network architectures (Liu et al., 2019; Lian et al., 2019),

exploration strategies (Zheng et al., 2018; Veeriah et al., 2019; Xu et al., 2018a), or

hyperparameters (Zahavy et al., 2020; Franceschi et al., 2018). Meta-learning can

happen across multiple tasks (Finn et al., 2017a; Kirsch et al., 2020), or to accelerate

RL in a single task (Zahavy et al., 2020; Xu et al., 2020; Flennerhag et al., 2022).

As discussed in Section 3, we consider Meta-Learning for the Fast Adaptation

setting, with the goal to develop RL agents that can rapidly learn new tasks.

Existing approaches can be roughly divided into “gradient-based” and “memory-

based” adaptation. We present the most prevalent method for each here, which

form the basis for the methods presented in this thesis. Specific work related to

individual contributions is discussed in the respective Chapters 5-8.
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4.1 Fast Adaptation with Gradients

Learning a new task can take place in several ways. One way is gradient-based

optimisation, which is also the method of choice for most of Deep RL, with the

difference that we now expect the agent to only take very few gradient steps to

learn a task – typically 1-10, compared to hundreds of thousands in standard RL.

In 2017, Model-Agnostic Meta-Learning (Finn et al., 2017a, MAML) was

proposed, which is a general and powerful gradient-based Meta-Learning algorithm.

MAML learns a model initialisation that allows fast adaptation at test time. In

other words, given a policy πθ, MAML finds an initialisation θ0 such that we can

learn any task from a task distribution p(M) within just a few gradient steps

when starting from θ0.

This can be done by optimising directly for post-adaptation performance in the

inner loop as follows. Given a batch of B tasks {Mi}B−1
i=0 , we update the policy

separately on each task once1 to get a new parameter θ(i)
1 per task:

θ
(i)
1 ← θ0 + αinner ∇θEπθ0,Ti

[
H−1∑
t=0

r
(i)
t

]
. (4.1)

For the outer-loop update, we then separately evaluate each new parameter θ(i)
1 on its

task, and update the initial θ0 to maximise the average post-adaptation performance,

θ0 ← θ0 + αouter ∇θ
1
B

B−1∑
i=0

Eπ
θ

(i)
1
,Ti

[
H−1∑
t=0

r
(i)
t

]
. (4.2)

This requires backpropagating through the inner-loop update, which is possible

since it is fully differentiable in θ, and will include higher-order gradients in θ. After

meta-training, we have a policy initialisation θ0, for which we only have to do a

few gradient updates to learn any task from p(M).

There exists a vast number of gradient-based Meta-Learning methods, many

of which build directly on MAML (e.g., Grant et al., 2018; Yoon et al., 2018;

Finn et al., 2018; Lee et al., 2018; Li et al., 2017b; Al-Shedivat et al., 2018).

In all these, adaptation at meta-test time is done doing gradient updates, and
1We outline everything for 1 gradient step for ease of exposition, but the same optimisation

procedure also applies when doing multiple gradient steps.
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meta-learning is done by backpropagating through the inner-loop update. These

updates are also called meta-gradient updates.

Adapting fast with gradients is more suitable for the Few-Shot Adaptation

setting (Section 3.2.1), rather than the Online Adaptation Setting (Section 3.2.2).

This is because updates to the policy can usually only happen after entire batches

of data have been collected, whereas for Online Adaptation the policy needs to

typically incorporate new information after every timestep in order to do well. In

Chapter 5 we consider the Few-Shot Adaptation setting, and build on MAML to

develop a Meta-Learning method first for the Supervised Learning and then for the

Reinforcement Learning setting. Unlike MAML, our method separates task inference

and task solving, as motivated in Section 3.1.1, which leads to better performance.

4.2 Fast Adaptation with RNNs

Another way of adapting to new tasks is using recurrent neural networks (see Section

2.1.4), instead of explicit gradient updates. The inner workings of the RNN, i.e.,

the updating of the hidden state, can then be seen as a learning algorithm itself.

Supervised Learning In Supervised Learning, we learn from a dataset D =

{(x, y)k}Kk=1 a function fθ : x 7→ ŷ to map datapoints x to desired outputs y as closely

as possible, measured by a loss L(y, ŷ). RNNs are used in Supervised Meta-Learning

to, e.g., learn algorithms or optimisers (Andrychowicz et al., 2016; Ravi et al., 2017;

Li et al., 2017a) or to embed data (Duan et al., 2017). The idea goes back to

Hochreiter et al. (2001), which later inspired similar approaches in Meta-RL. Here,

a RNN receives at each step the target output of the previous step as an additional

input, fRNNθ (x(i+1), y(i), h(i)). I.e., the network first makes a prediction ŷ(i) for inputs

x(i) with true targets y(i) (e.g., two images, one labelled “cat” and one labelled

“dog”). Then in the next step, when making a prediction for new inputs x(i+1), the

model is also given the correct targets y(i) for the previous prediction as additional

input. By having access to the correct targets, the network can learn solely by the

dynamics of the recurrent network (while the network weights themselves stay fixed).
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Reinforcement Learning In the field of RL, the idea of using a recurrent neural

network for Meta-Learning has been explored concurrently by Wang et al. (2016,

L2RL) and Duan et al. (2016, RL2).2 Here, the policy is a RNN, which gets the

previous reward and action as an additional input, beside the current state.

More specifically, in the inner loop, given a batch of B tasks {Mi}B−1
i=0 , learning

is done by simply rolling out the recurrent policy in each task separately. At each

timestep t in the current task i, the policy acts according to

πRNNθ (a(i)
t |s

(i)
t , r

(i)
t , a

(i)
t−1, h

(i)
t ), (4.3)

where θ are the current policy’s parameters, r(i)
t and a(i)

t−1 are the most recent reward

and actions, and h(i)
t is the current hidden vector of the RNN (with initial hidden

vector h(i) =0). By having access to the effects its action have on the environment

and the reward it gets, the policy can adapt to new tasks via the recurrent dynamics

and by implicitly embedding the task in the RNN hidden state.

In the outer loop, the policy parameters θ are then updated to maximise the

expected online return across tasks (Equation 3.2):

max
θ

1
B

B−1∑
i=0

EπRNN
θ

,Ti [R(τ)] , (4.4)

where τ is the trajectory collected by the recurrent policy πRNNθ . RL2 maximises the

expected online return (see Sec 3.2.2) in the original papers by Duan et al. (2016)

and Wang et al. (2016), but can also be used with Equation (3.1) for Few-Shot

Adaptation, by masking out the rewards for the phase where we allow the agent

to freely explore (Stadie et al., 2018).

RL2 can learn a Bayes-optimal policy (Section 2.2.1), which has been shown

theoretically (Ortega et al., 2019) and empirically (Mikulik et al., 2020). This is

because the RNN can, in principle, do belief updates in the hidden state. Similarly

to MAML however, the agent is a black-box, and we do not have much control over

or insight into what the RNN actually implements. In Chapters 6 and 7 we propose

algorithms that instead do explicit belief updates, and find that this can significantly

improve performance, and give us some insight into the agent’s current belief.
2We often use the acronym RL2 to refer to both Wang et al. (2016) and Duan et al. (2016).
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In the previous chapters, we motivated our goal of developing autonomous agents

that can learn new tasks efficiently and on their own. This is necessary so that we

can someday deploy RL agents safely in the real world without human oversight,

even when we cannot fully pre-train the agent on all possible situations.

In particular, we argued two things. First, in many Fast Adaptation settings we

should separate task inference from task solving (Sec 3.2.2). Our hypothesis is that by

doing this split explicitly, we can improve performance due to more supervision and

specialisation of model parts, compared to fully black-box models. Second, for many
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real world applications, we should consider the Online Adaptation setting (Sec 3.2),

where the agent has to perform well from the moment it starts interacting with an

environment. This produces agents that learn more efficiently, and need less human

oversight while doing so. The optimal solution to this is a Bayes-optimal policy

(Sec 2.2), which however is intractable to compute for all but the smallest tasks.

In this chapter, we take a first step towards this goal and understanding whether

an explicit split between task inference and task solving can help. To this end, we

consider the setting of Few-Shot Adaptation and Supervised Learning. Recall from

Section 3.2.1 that in Few-Shot Adaptation, the agent has some time to freely learn

and explore, before having to perform well. This is easier since it does not require

Bayes-optimal exploration; in fact, even random exploration might suffice if the

rewards are dense and informative enough for the agent to infer the task. We consider

the Supervised Learning setting, since it does not have some of the challenges of RL,

like exploration and long-term credit assignment. It is therefore an ideal starting

point to study the proposed split between task inference and task solving, in a

setting where we are given a fixed dataset to learn from. Classification and regression

experiments show that our proposed method leads to improved performance, scales

better with the network size, and is more interpretable. We conclude the chapter

with RL experiments (Section 5.3), and a discussion on shortcomings and next steps.

5.1 Context Parameters for Task Inference

In Section 3.1.1, we hypothesised that it is helpful to decouple task inference from

solving the task. Following this intuition, we concretely propose to implement

this via a split in the model architecture:

When learning a new task, we first try to find out what task we are in,

and summarise this in a context vector ξ ∈ Rd. We then condition on

this context when making a prediction.

This split is illustrated in Figure 5.1. On the left (5.1a) is a black-box model, that

takes an input x (e.g., an image in classification or a state in RL) and produces an
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(a) Black-Box Model (b) Model with Context Parameter

Figure 5.1: Task inference and task solving in different model architectures.
(a): A black-box model takes an input x and produces an output y. The model both infers
the task and computes a solution. (b): The model conditions on an additional input, the
context ξ, representing the task. Given this and an input x, it makes a prediction y.

output y (e.g., a class label or an action). This model has to both infer the task

and compute a solution. Our proposed modification is shown on the right (5.1b).

The task information is summarised in a context vector ξ, which is passed to the

model in addition to the input x. This task representation is not given to us a

priori (in contrast to, e.g., in multi-task learning): instead, we have to learn it. We

hypothesise that this architectural change has the following advantages:

• It is easier to optimise, since we have specialised network parts. The additional

inductive bias on how learning should occur can lead to improved performance.

• Compressing the task information into a single vector means we can use this

vector to analyse the solution, or use it for downstream tasks.

We investigate our hypotheses in this chapter by modifying the MAML model (Finn

et al., 2017a), since it is a general Meta-Learning method that can be applied to

both Supervised and Reinforcement Learning. Our proposed method CAVIA – Fast

Context Adaptation via Meta-Learning – updates only a context vector at test time,

instead of the entire network like MAML. We evaluate our approach on Supervised

Learning benchmarks, ablate its performance with regards to learning rates and

network/context size, and visualise how the task is captured in the context vector.

To conclude the chapter, we apply CAVIA to a Reinforcement Learning problem,

and discuss the advantages and shortcomings of this approach.
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5.2 Supervised Learning

In this section we introduce the Supervised Learning setting, and propose our method

that uses context adaptation for Fast Adaptation. Experiments on regression and

classification tasks evaluate our proposed method.

5.2.1 Background

In Supervised Learning, we are given a dataset D = {(x, y)k}Kk=1 of K data points

x (e.g., images) and associated labels y (e.g., object classes), and we want to learn

a model fθ : x 7→ ŷ that maps data points to predictions ŷ ∈ Y as accurately as

possible. To train and evaluate a model, we use a loss function L(fθ(x), y) (e.g.,

the mean squared error for regression, or the binary cross entropy for classification).

We typically divide the dataset into disjoint sets; a training set Dtrain to learn

the parameter θ, and a test set Dtest to evaluate the learned model. In standard

Supervised Learning, the size K of the dataset is large (thousands to millions of

datapoints). When this is not possible, and we are only given a small dataset (e.g.,

a handful of datapoints) from which to learn fθ, we refer to this as the “Few-Shot

Learning” setting. This is similar to the Few-Shot Adaptation RL setting that we

introduced in Section 3.2.1, where the agent can freely collect some data before

being evaluated. A general way to train Few-Shot Learning methods is to train

on a set of related tasks, e.g., using Meta-Learning.

Meta-Learning for Few-Shot Supervised Learning We assume access to a

distribution over tasks, p(T ), where a task is defined as a tuple Ti = (Xi,Yi,Li, qi).

Here, Xi is the input space, Yi the output space, Li(y, ŷ) a task-specific loss function,

and qi(x, y) a distribution over labelled data points. Different tasks can be created

by changing any element of Ti. For example, in a 2-way classification task, we can

change Xi and Yi so that one task has images and labels of cats and dogs, and

another task has images and labels of birds and snakes.
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During meta-training, at each iteration, a batch of B tasks T = {Ti}Bi=1 is

sampled from p. For each task Ti ∈ T, we then sample two datasets Dtrain
i and Dtest

i :

Dtrain
i = {(x, y)i,m}M

train
i

m=1 , Dtest
i = {(x, y)i,m}M

test
i

m=1 , (5.1)

where (x, y) ∼ qi, and M train
i and M test

i are the number of training and test

datapoints. The training data is used to update fθ, and the test data is then used

to evaluate how good this update was, and adjust fθ or the update rule accordingly.

After meta-training, the model is evaluated on unseen tasks drawn from p.

MAML for Supervised Learning MAML (Finn et al., 2017a, see Section 4.1)

can be applied to both Supervised and Reinforcement Learning problems. We

briefly outline the MAML equations for the Supervised Learning setting here (for

the RL ones see Section 4.1).

In the inner loop, MAML computes new task-specific parameters θi (starting

from θ) via one gradient update1,

θi = θ − α∇θ
1

M i
train

∑
(x,y)∈Dtrain

i

LTi(fθ(x), y) . (5.2)

For the meta-update in the outer loop, the original model parameters θ are then

updated with respect to the performance after the inner-loop update, i.e.,

θ ← θ − β∇θ
1
N

∑
Ti∈T

1
M i

test

∑
(x,y)∈Dtest

i

LTi(fθi(x), y) . (5.3)

Since the gradient is taken with respect to the parameters θ before the inner-loop

update (5.2), the outer-loop update (5.3) involves higher order derivatives of θ.

5.2.2 CAVIA

In MAML (Finn et al., 2017a), the entire network is updated when learning a new

task. It therefore resembles our illustration in Figure 5.1a, where the model is a

black-box that does both task solving and task inference. Instead, we propose to

split these two aspects when learning to tasks as illustrated in Figure 5.1b.
1We outline MAML for one gradient update step, but it can be used with several gradient

update steps as well.
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To this end, we propose Fast Context Adaptation via Meta-Learning (CAVIA).

CAVIA modifies MAML such that the model now has an additional input, a context

vector ξ ∈ Rd of length d, that is separate from the model parameters θ. We train

this model such that at meta-test time, when learning a new task, we adapt by

simply updating the context parameter ξ. The training procedure is as follows.

At every meta-training iteration for the current batch of tasks T, we use the

training data Dtrain
i of each task Ti ∈ T as follows. Starting from a fixed value ξ0

(typically ξ0 =0), we learn task-specific parameters ξi via one gradient update:

ξi = ξ0 − α∇ξ
1

M train
i

∑
(x,y)∈Dtrain

i

LTi(fξ0,θ(x), y). (5.4)

While we only take the gradient with respect to ξ, the updated parameter ξi is also a

function of θ, since during backpropagation, gradients flow through the model. Given

updated parameters ξi for all sampled tasks, we update θ in the outer loop with

θ ← θ − β∇θ
1
N

∑
Ti∈T

1
M test

i

∑
(x,y)∈Dtest

i

LTi(fξi,θ(x), y) . (5.5)

This update includes higher order gradients in θ due to the dependency on

(5.4). The model parameters θ are shared across tasks. At test time, only

the context parameters are updated, and θ is held fixed. Algorithm 1 shows

pseudo-code for CAVIA.

Algorithm 1 CAVIA for Supervised Learning
Require: Distribution over tasks p(T )
Require: Step sizes α and β
Require: Initial model fξ0,θ with θ initialised randomly and ξ0 =0
1: while not done do
2: Sample batch of tasks T = {Ti}Bi=1 where Ti ∼ p
3: for all Ti ∈ T do
4: Dtrain

i ,Dtest
i ∼ qTi

5: ξ0 = 0
6: ξi = ξ0 − α∇ξ

1
Mtrain
i

∑
(x,y)∈Dtrain

i

LTi(fξ0,θ(x), y)

7: end for
8: θ ← θ − β∇θ

1
N

∑
Ti∈T

1
Mtest
i

∑
(x,y)∈Dtest

i

LTi(fξi,θ(x, y))

9: end while
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Figure 5.2: Context adaptation in CAVIA. The inputs to a network layer hl
are augmented with a context vector ξ (red). The context is initialised to 0 before
each adaptation step and updated by gradient descent during the inner loop. Network
parameters θ (green) are only updated in the outer loop and shared across tasks. Hence,
they stay fixed at test time. By initialising ξ to 0, the network parameters associated
with the context parameters (blue) do not affect the layer output before adaptation. After
the first adaptation step they modulate the rest of the network for the given task.

Conditioning on Context Parameters Since ξ is independent of the network

input, we are free to decide where and how to condition the network on the

context. For a fully connected layer l, we can for example simply concatenate

ξ to the layer inputs h(l−1)
j , and get

h
(l)
i = g

 J∑
j=1

θ
(l,h)
j,i h

(l−1)
j +

K∑
k=1

θ
(l,ξ)
k,i ξ0,k + b

 , (5.6)

where g is a nonlinear activation function, b a bias parameter, θ(l,h)
j,i the weights

for the layer inputs h(l−1)
j , θ(l,ξ)

k,i the weights for the context parameter ξ0,k, and h(l)
i

the output. In our experiments, for fully connected networks, we add the context

parameter at the first layer, i.e., concatenate them to the input.

For convolutional networks, we use feature-wise linear modulation (FiLM, Perez

et al., 2017), which performs an affine transformation on the feature maps. Given
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a context ξ and a convolutional layer that outputs L feature maps {hi}Li=1, FiLM

linearly transforms each feature map FiLM(hi) = γihi + β, where γ, β ∈ RM are

a function of the context parameters. We use a fully connected layer [γ, β] =∑K
k=1 θ

(l,ξ)
k,i ξ0,k + b with the identity function at the output.

Context Parameter Initialisation When learning a new task, the context has

to be initialised to some value, ξ0. Instead of meta-learning this initialisation, a fixed

ξ0 suffices: in (5.6), if both θ(l,ξ)
j,i and ξ0 are meta-learned, the learned initialisation

of ξ can be subsumed into the bias parameter b, and ξ0 can be set to a fixed value.

Hence, the initialisation of the context parameters does not have to be meta-learned

and parameter copies are not required during training. In our experiments we set

the initial context to a zero vector, ξ0 = 0 = (0, . . . , 0).

Furthermore, not updating the context parameters ξ in the outer loop allows

for a more expressive gradient in the inner loop, and makes CAVIA more robust to

the inner loop learning rate, α in (5.4). Before an inner loop update, the part of

the model associated with ξ does not affect the output (since they are inputs and

initialised at 0). During the inner update, only ξ changes and can affect the output

of the network at test time. Even if this update is large, the parameters θ(l,ξ)
k,i that

connect ξ to the rest of the model, are automatically scaled during the outer loop.

In other words, the weights θ(l,ξ)
k,i which connect the context ξ to the model, can

compensate for any excessively large inner loop update via their weight magnitude.

However, doing large gradient updates in every outer loop update step as well would

lead to divergence and numerical overflow. In Section 5.2.3, we show empirically that

the decoupling of learning ξ and θ can indeed make CAVIA more robust to the initial

learning rate compared to also learning the initialisation of the context parameters.

Next, we empirically evaluate CAVIA on regression and classification tasks.

Code is available at https://github.com/lmzintgraf/cavia.

https://github.com/lmzintgraf/cavia
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Number of Additional Input Parameters
Method 0 1 2 3 4 5 50
CAVIA - 0.84 0.21 0.20 0.19 0.19 0.19
MAML 0.33 0.29 0.24 0.24 0.23 0.23 0.23

Table 5.1: Results for the sine curve regression task. Shown is the mean-squared
error of CAVIA and MAML for varying number of input parameters. The 95% confidence
intervals are 0.06 for CAVIA with context size 1, and 0.02 everywhere else.

5.2.3 Experiments: Regression

Sine Curves We start with the regression problem of fitting sine curves used in

Finn et al. (2017a). A task is defined by the amplitude and phase of a sine curve and

generated by uniformly sampling the amplitude from [0.1, 0.5] and the phase from

[0, π]. For training, we use a batch of 25 tasks, and for each, ten labelled datapoints

(uniformly sampled from x ∈ [−5, 5]) are given. The inner-loop update is done using

a mean-squared error (MSE) loss. We use a neural network with two hidden layers

and 40 nodes each. The number of context parameters varies between 2 and 50.

During testing we present the model with ten datapoints from 1000 newly sampled

tasks and measure the MSE over 100 test points. To allow a fair comparison, we

add additional input biases to MAML (the same number as context parameters

that CAVIA uses), an extension that was also done by Finn et al. (2017b). These

additional parameters are meta-learned together with the rest of the network.

Table 5.1 shows that CAVIA outperforms MAML even when MAML gets the

same number of additional parameters, despite the fact that CAVIA adapts only

2-5 parameters, instead of around 1600. CAVIA’s performance on the regression

task correlates with how many variables are needed to encode the tasks. In

these experiments, two parameters vary between tasks, which is exactly the

context parameter dimensionality at which CAVIA starts to perform well. This

suggests CAVIA indeed learns task descriptions in the context parameters via

backpropagation at test time. Figure 5.3 illustrates this by plotting the value

of the learned inputs against the amplitude/phase of the task in the case of two

context parameters. The model learns a smooth embedding in which interpolation

between tasks is possible.
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Figure 5.3: Visualisation of what two context parameters learn on a new task.
Shown is the value they take after 5 gradient update steps on a new task. Each dot is
one random task; its colour indicates the amplitude (left) or phase (right) of that task.

Figure 5.4 shows additional analyses on the experimental results. Figure 5.4a

shows that when performing more gradient steps at test time compared to training,

CAVIA outperforms MAML and has a more stable, monotonic learning curve. As

described in Section 5.2.2, CAVIA can scale the gradients of the context parameters

since they are inputs to the model and trained separately. Figure 5.4b shows the

performance of CAVIA, MAML, and CAVIA when also learning the initialisation

of ξ (i.e., updating the context parameters in the outer loop), for a varying learning

rate from 10−6 to 10. CAVIA is robust to changes in learning rate while MAML

performs well only in a small range. Figure 5.4c gives insight into how CAVIA does

this: we plot the inner learning rate against the norm of the gradient of the context

parameters at test time. The weights are adjusted so that lower learning rates bring

about larger context parameter gradients and vice-versa. MT-Nets (Lee et al., 2018),

which learn which subset of parameters to adapt on a new task, are also robust

to the inner-loop learning rate, but in a smaller range than CAVIA.2 Similarly, Li

et al. (2017b) show that MAML can be improved by learning a parameter-specific

learning rate, which, however, introduces a lot of additional parameters.
2See Lee et al. (2018). We do not show the numbers they report since we outperform them

significantly, likely due to a different experimental protocol.
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(a) Test Performance

(b) Learning Rates (c) Gradient Norms

Figure 5.4: Analysis of the sine curve experiments. (a) Test performance after
several gradient steps on the same batch, averaged over 1000 unseen tasks. Both CAVIA
and MAML continue to learn, but CAVIA is more stable with a monotonic learning curve.
(b) Test Performance after training with different inner loop learning rates for MAML,
CAVIA, and CAVIA with a learned ξ0. (c) CAVIA scales the model weights so that the
inner learning rate is compensated by the context parameters gradients magnitude.

Image Completion To evaluate CAVIA on a more challenging regression task,

we consider image completion (Garnelo et al., 2018a). The task is to predict pixel

values from coordinates, i.e., learn a function f : [0, 1]2 → [0, 1]3 which maps

2D pixel coordinates x ∈ [0, 1]2 to pixel intensities y ∈ [0, 1]3 (RGB values). An

individual picture is considered a single task, and we are given a few pixels as

a training set Dtrain and use the entire image as the test set Dtest (including the

training set). We train CAVIA on the CelebA (Liu et al., 2015) training set, perform

model selection on the validation set, and evaluate on the test set.
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Random Pixels Ordered Pixels
10 100 1000 10 100 1000

CNP∗ 0.039 0.016 0.009 0.057 0.047 0.021
MAML 0.040 0.017 0.006 0.055 0.047 0.007
CAVIA 0.037 0.014 0.006 0.053 0.047 0.006

Table 5.2: Quantitative image completion results. Average pixel-wise MSE for the
image completion task on the CelebA dataset. We test different number of training points
per image (10, 100, 1000). The training pixels are chosen either at random or ordered
from the top-left corner to the bottom-right. (*Results from Garnelo et al. (2018a))

Figure 5.5: Qualitative image completion results. Left: True image. Top row:
training pixels for 10, 100, and 1000 training points. Bottom row: prediction of CAVIA
when 128 context parameters were updated for 5 gradient steps.

Garnelo et al. (2018a) use an MLP encoder with three hidden layers of width 128,

a 128-dimensional embedding, and a five-layer decoder of width 128. To allow a fair

comparison, we choose a context vector of size 128, and an MLP with five hidden

layers of width 128 for the main network. We chose an inner-learning rate of 1.0

without tuning. For MAML we use the same five-layer MLP network including 128

additional input biases, and an inner-loop learning rate of 0.1 (other tested values:

1.0, 0.01). CAVIA and MAML were trained with five inner-loop gradient updates.

Table 5.2 shows the results in terms of pixel-wise MSE for different numbers of

training pixels (k = 10, 100, 1000 shot), and for the case of randomly selected and

ordered pixels (starting from the top left of the image). CAVIA outperforms CNPs

and MAML in most settings. Figure 5.5 shows an example image reconstruction

produced by CAVIA (more results in Appendix A). These results show that it

is possible to learn an embedding only via backpropagation and with far fewer

parameters than when using a separate embedding network.
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5.2.4 Experiments: Classification

To evaluate how CAVIA scales to problems that require larger networks, we test it

on the few-shot image classification benchmark Mini-Imagenet (Ravi et al., 2017).

In N -way K-shot classification, a task is a random selection of N classes, for each of

which the model gets to see K examples. From these it must learn to classify unseen

images from the N classes. The Mini-Imagenet dataset consists of 64 training

classes, 12 validation classes, and 24 test classes. During training, we generate a

task by selecting N random classes and K examples of each, i.e., a batch of N ×K

images. The meta-update is done on a set of unseen images of the same classes.

On this benchmark, MAML uses a network with four convolutional layers with

32 filters each and one fully connected layer at the output (Finn et al., 2017a).

We use the same network architecture, but we also test scaling up the number

of filters, up to 512 filters per layer. We use 100 context parameters and add a

FiLM layer that conditions on these after the third convolutional layer and whose

parameters are meta-learned with the rest of the network, i.e., they are part of

θ. All our models were trained with two gradient steps in the inner loop and

evaluated with two gradient steps. Following Finn et al. (2017a), we ran each

experiment for 60, 000 meta-iterations and selected the model with the highest

validation accuracy for evaluation on the test set.

Table 5.3 shows our results on Mini-Imagenet held-out test data for 5-way

1-shot and 5-shot classification. Our smallest model (32 filters) underperforms

MAML (within the confidence intervals), and our largest model (512 filters) clearly

outperforms MAML. CAVIA benefits from increasing model expressiveness: since we

only adapt the context parameters in the inner loop per task, we can substantially

increase the network size without overfitting during the inner loop update. We

tested scaling up MAML to a larger network size as well (see Table 5.3), but found

that this hurt accuracy, which was also observed by Mishra et al. (2018). We

also include results for the first order approximation of our largest models, where

the gradient with respect to θ is not backpropagated through the inner loop. As

expected, this results in a lower accuracy (a drop of 2 percentage points).
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5-way accuracy
Method 1-shot 5-shot
Matching Nets (Vinyals et al., 2016) 46.6% 60.0%
Meta LSTM (Ravi et al., 2017) 43.44± 0.77% 60.60± 0.71%
Prototypical Nets (Snell et al., 2017) 46.61± 0.78% 65.77± 0.70%
Meta-SGD (Li et al., 2017b) 50.47± 1.87% 64.03± 0.94%
REPTILE (Nichol et al., 2018) 49.97± 0.32% 65.99± 0.58%
MT-NET (Lee et al., 2018) 51.70± 1.84% -
VERSA (Gordon et al., 2019) 53.40± 1.82% 67.37± 0.86
MAML (32) (Finn et al., 2017a) 48.07± 1.75% 63.15± 0.91%
MAML (64) 44.70± 1.69% 61.87± 0.93%
CAVIA (32) 47.24± 0.65% 59.05± 0.54%
CAVIA (128) 49.84± 0.68% 64.63± 0.54%
CAVIA (512) 51.82± 0.65% 65.85± 0.55%
CAVIA (512, first order) 49.92± 0.68% 63.59± 0.57%

Table 5.3: Few-shot classification results on the Mini-Imagenet test set.
Average accuracy with 95% confidence intervals on a random set of 1000 tasks For MAML
with 32 filters, we show the results reported by Finn et al. (2017a). For 64 filters, we
ran the author’s public code. These results show that CAVIA is able to scale to larger
networks without overfitting, and outperforms MAML by doing so. The table includes
other CNN-based methods with similar experimental protocol. We did not tune CAVIA
to compete with these methods, but focus on the comparison to MAML.

We focus these experiments on the comparison to MAML, since we aim to

validate the context-based approach. We did not tune CAVIA in terms of network

architecture or other hyperparameters, but only varied the number of filters at

each convolutional layer. At the time of publication, the best concurrent method

with similar architecture and experimental protocol was VERSA (Gordon et al.,

2019), which learns to produce weights of the classifier, instead of modulating the

network. The state-of-the-art results in Mini-Imagenet was the method LEO Rusu

et al. (2019), which uses pre-trained feature representations from a deep residual

network (He et al., 2016b) and a different experimental protocol.

In conclusion, CAVIA can achieve higher accuracies than MAML by increasing

the network size, without overfitting. CAVIA adjusts only 100 parameters at test

time, compared to > 30, 0000 in MAML. These results confirm that separating task

inference from solving with the context-based approach is valuable. Encouraged

by these results, we turn to the Reinforcement Learning setting next.
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5.3 Reinforcement Learning

Following the success of CAVIA across a variety of Supervised Learning settings,

we now evaluate the context-based approach in an RL setting.

Meta-Training During each meta-training iteration of MAML and CAVIA, for

each Ti ∈ T, we first collect a trajectory

τ traini = {s0, a0, r1, s1, a1, r2, . . . , sMtrain
i −1, aMtrain

i −1, rMtrain
i

, sMtrain
i
}, (5.7)

where actions are chosen by the current policy π, and M train
i is the number of free

environment interactions that we allow the agent (see Section 3.2.1). We unify

several episodes in this formulation: if the MDP horizon H is reached within the

trajectory, the environment is reset. Once the trajectory is collected, this data is

used to update the policy. Another trajectory τ testi is then collected by rolling out

the updated policy for M test
i timesteps. This test trajectory is used to evaluate the

quality of the update on that task, and to adjust π or the update rule accordingly.

5.3.1 CAVIA for RL

During each iteration, for a current batch of MDPs T = {Ti}Bi=1, we proceed as

follows. Given ξ0, we collect a rollout τ traini by executing the policy πξ0,θ. We then

compute task-specific parameters ξi via one gradient update:

ξi = ξ0 + α∇ξJ̃Ti(τ traini , πξ0,θ), (5.8)

where J̃ (τ, π) is an RL objective such as a policy gradients objective (see Sec 2.1).

After updating the policy, we collect another trajectory τ testi to evaluate the updated

policy, where actions are chosen according to the updated policy πξi,θ. After doing

this for all tasks in T, the meta-update step updates θ to maximise the average

performance across tasks (after individually updating ξ for them),

θ ← θ + β∇θ
1
N

∑
MDPi∈T

J̃Ti(τ testi , πξi,θ). (5.9)

This update includes higher order gradients in θ due to the dependency on (5.8).

Algorithm 2 shows pseudo-code for CAVIA in the RL setting.
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Algorithm 2 CAVIA for RL
Require: Distribution over tasks p(T )
Require: Step sizes α and β
Require: Initial policy πξ0,θ with θ initialised randomly and ξ0 = 0
1: while not done do
2: Sample batch of tasks T = {Ti}Bi=1 where Ti ∼ p
3: for all Ti ∈ T do
4: Collect rollout τ traini using πξ0,θ

5: ξi = ξ0 + α∇ξJ̃Ti(τ traini , πξ0,θ)
6: Collect rollout τ testi using πξi,θ
7: end for
8: θ ← θ + β∇θ

1
N

∑
Ti∈T
J̃Ti(τ testi , πξi,θ)

9: end while

5.3.2 Experiments

MuJoCo We apply CAVIA to two high-dimensional RL tasks using the MuJoCo

physics engine (Todorov et al., 2012a) and setup from Finn et al. (2017a). In the first

experiment, CheetahDir, a simulated HalfCheetah (shown in Figure 5.6) must run in

a randomly chosen direction (forward/backward), and receives as reward its speed

in that direction. In the second experiment, CheetahVel, the simulated HalfCheetah

must run at a particular velocity, chosen uniformly at random between 0.0 and 2.0.

The agent’s reward is the negative absolute value between its current and the target

velocity. The agent gets 20 rollouts of length to explore (of length 200 each). After

collecting this data, we perform gradient updates, and then evaluate the agent. The

meta-batchsize is 40 tasks per outer update. As in Finn et al. (2017a), our agents are

trained for one gradient update, using policy gradient with generalised advantage

estimation (Schulman et al., 2015b) in the inner loop and TRPO (Schulman et al.,

2015a) in the outer loop update. Following the protocol of Finn et al. (2017a), both

CAVIA and MAML are trained for up to 500 meta-iterations, and the models with

the best average return during training were used for evaluation. For these tasks,

we use 50 context parameters for CAVIA and an inner-loop learning rate of 10. We

found that starting with a higher learning rate helps for RL problems, since the

policy update in the outer loop has a stronger signal from the context parameters.
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Figure 5.6: Screenshot of the HalfCheetah in the physics engine MuJoCo. The
agent controls multiple joints of the HalfCheetah, which can run to the left or right.

(a) Cheetah Direction (b) Cheetah Velocity

Figure 5.7: Results for two MuJoCo HalfCheetah tasks. Both agents were trained
to perform one gradient update, but are evaluated for several update steps. Results are
averaged over 40 randomly selected tasks.

Figure 5.7 shows the performance of the CAVIA and MAML agents at test

time, after up to three gradient steps (averaged over 40 randomly selected test

tasks). Both models keep learning for several updates, although they were only

trained for one update step. CAVIA outperforms MAML on both domains after

one gradient update step, while updating only 50 parameters at test time per task

compared to over 10, 000. For the Cheetah Velocity experiment, MAML catches

up after three gradient update steps.
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(a) Multiple gradient updates. (b) Goal position embedding.

Figure 5.8: Results for the 2D navigation task. Left (a): Performance at test
time when updating MAML and CAVIA for up to three gradient steps. Right (b):
Visualisation of the 2D context parameter in CAVIA after adaptation. The encoding of
the two-dimensional goal coordinates are clearly reflected in the learned context vector.

2D Navigation We also perform RL experiments on the 2D Navigation task

of Finn et al. (2017a). The agent moves in a 2D world using continuous actions

and at each timestep is given a negative reward proportional to its distance from

a pre-defined goal position. Each task has a new unknown goal position.

We follow the same procedure as Finn et al. (2017a). Goals are sampled from

an interval of (x, y) = [−0.5, 0.5]. At each step we sample 20 tasks for both the

inner and outer loops and testing is performed on 40 new unseen tasks. We learn

for 500 iterations and optimise for one gradient update in the inner loop. The

best performing policy during training is then presented with new test tasks and

allowed two gradient updates. For each update, the total reward over 20 rollouts per

task is measured. We use a two-layer network with 100 units per layer and ReLU

nonlinearities to represent the policy and a linear value function approximator.

For CAVIA we use five context parameters at the input layer. Figure 5.8a shows

that the two methods are highly competitive. Notably, CAVIA adapts only five

parameters at test time, whereas MAML adapts the entire network which consists of

around 10, 000. As with regression, the optimal task embedding is low dimensional

enough to visualise. To this end, we train CAVIA with only two context parameters

and plot how these correlate with the actual position of the goal for 200 test tasks.
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Figure 5.8b shows that the context parameters obtained after two policy gradient

updates represent a disentangled embedding of the actual task. Specifically, context

parameter 1 encodes the y position of the goal, while context parameter 2 encodes

the x position. This confirms that CAVIA can indeed learn compact interpretable

task embeddings via backpropagation through the inner loss.

We return to a similar environment in a more difficult form in Chapter 6 for the

Online Adaptation setting. There we consider a 2D navigation task where goals can

be along a half-circle (similar to what we showed in Figure 3.1a), and where the

rewards are sparse in the sense that the agent only gets a reward signal if it is close

to the goal. This requires the agent to explore efficiently along the 2D half-circle.

5.4 Related Work

Compared to many existing gradient-based Meta-Learning approaches like MAML

(Finn et al., 2017a), CAVIA adapts only a few parameters at test time: a context

vector ξ that the model conditions on. Closely related are MT-Nets (Lee et al., 2018),

which learn which parameters to update in MAML. MT-Nets learn an M-Net which

is a mask indicating which parameters to update in the inner loop, sampled (from

a learned probability distribution) for each new task; and a T-net which learns a

task-specific update direction and step size. CAVIA is a simpler, more interpretable

alternative where the task-specific and shared parameters are disjoint sets.

Additional input biases to MAML were considered by Finn et al. (2017b), who

show that this improves performance on a robotic manipulation setting. By contrast,

we update only the context parameters in the inner loop, and initialise them to

zero before adaptation to a new task. Rei (2015) propose a similar approach in the

context of neural language models, where a context vector represents the sentence

that is currently being processed (see also the Appendix of Finn et al. (2017a)).

Unlike CAVIA, this approach updates context parameters in the outer loop, i.e.,

it learns the initialisation of ξ. This coupling of the gradient updates leads to

a less flexible meta-update and is not as robust to the inner loop learning rate

like CAVIA, as we show empirically in 5.2.3.
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Silver et al. (2008) proposed context features as a component of inductive

transfer, using a predefined one-hot encoded task-specifying context as input to

the network. They show that this works better than learning a shared feature

extractor and having separate heads for all tasks. In CAVIA, we instead learn this

contextual input from data of a new task. Such context features can also be learned

by a separate embedding network as in, e.g., Oreshkin et al. (2018) and Garnelo

et al. (2018a), who use the task’s training set to condition the prediction network.

CAVIA instead learns the context parameters via backpropagation through the

same network used to solve the task.

Several methods learn to produce network weights from task-specific embeddings

or labelled datapoints (Gordon et al., 2019; Rusu et al., 2019), which then operate

on the task-specific inputs. By contrast, we learn an embedding that modulates

a fixed network, and is independent of the task-specific inputs during the forward

pass. Specific to few-shot image classification, metric-based approaches learn to

relate (embeddings of) labelled images and new instances of the same classes

(Snell et al., 2017; Sung et al., 2018). By contrast, CAVIA can be used for

regression and RL as well. Other Meta-Learning methods are also motivated by

the practical difficulties of learning in high-dimensional parameter spaces, and

the relative ease of fast adaptation in lower dimensional space (e.g., Sæmundsson

et al., 2018; Zhou et al., 2018).

In the context of Reinforcement Learning, Gupta et al. (2018) condition the

policy on a latent random variable trained similarly to CAVIA, together with the

reparametrisation trick (although they do not explicitly interpret these parameters

as task embeddings). This latent variable is sampled once per episode, and thus

allows for structured exploration. Unlike CAVIA, they adapt the entire network

at test time, which can be prone to overfitting.

CAVIA is conceptually related to embedding-based approaches for fast adap-

tation such as conditional neural processes (CNPs) (Garnelo et al., 2018a) and

meta-learning with latent embedding optimisation (LEO) (Rusu et al., 2019). These

share the benefit of learning a low-dimensional representation of the task, which has
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the potential to lead to greater interpretability compared to MAML. In contrast to

existing methods, CAVIA uses the same network to learn the embedding (during a

backward pass) and make predictions (during a forward pass). Therefore CAVIA has

fewer parameters to train, but must compute higher-order gradients during training.

Since the publication of this work, several works have investigated the relationship

between “fast adaptation” versus “feature extraction” in MAML (Raghu et al.,

2020; Oh et al., 2021; Collins et al., 2022). The question raised in these works is

whether MAML mainly learns a feature extractor (and then only adapts the last

layer of the network at test time, but leaves those features mostly untouched), or

if it learns to adapt quickly (defined as also changing the first few layers of the

network, i.e., the feature extractor). Raghu et al. (2020) find that MAML indeed

seems to mainly update the last layer when adapting to test time. They also find

that when only updating the last layer of MAML (and freezing all earlier layers),

leads to the same or better performance – essentially, here the “task solving” is done

by the first layers, and the “task inference” is done by the last layer. This confirms

our hypothesis that many Fast Adaptation tasks, like few-shot classification, mostly

require task inference at test time, and that separating this from task solving is

beneficial. The split can be implemented in different ways, although we argue

that using a context vector has several benefits, like better interpretability, and

usefulness for downstream tasks. It also proves particularly useful in the following

chapters where we focus on the Reinforcement Learning problem, and introduce

Bayesian reasoning over the context parameters in order for the agent to take into

account its task uncertainty for exploration.

5.5 Discussion

In this chapter, we introduced Fast Context Adaptation via Meta-Learning (CAVIA):

a Meta-Learning method that separates a model into network parameters θ, and

an additional input called the context vector ξ serving as a task representation.

CAVIA explicitly optimises the task-independent parameters θ across tasks, such

that adapting the task-specific parameters ξ at test time allows for Fast Adaptation.
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Conclusion We found that explicitly separating task inference and solving using

fast context adaptation has several advantages.

• Adapting a small number of input parameters (instead of the entire network)

is sufficient to yield performance equivalent to or better than MAML on

regression, classification, and RL problems. In fact, it prevents meta-overfitting

(Mishra et al., 2018) since it only updates a few parameters at test time, as

opposed to the entire network, and is robust to the inner loop learning

rate. This allowed us to scale up the network size and improve performance

significantly in on the Mini-Imagenet task (Table 5.3).

• CAVIA is easier to parallelise and implement compared to MAML given

current auto-differentiation tools: computing the context parameters can be

easily parallelised in the inner loop without requiring parameter copies, and

we do not need to manually access and perform operations on the network

weights and biases to set up computation graphs.

• An embedding of the task emerges in the context vector solely via backpropa-

gation. We confirm empirically that the learned context parameters indeed

match the latent task structure (Figures 5.3 and 5.8b).

Open Questions In our experiments, we focused on a wide variety of domains

from Supervised Learning and Reinforcement Learning. An interesting open question

is how CAVIA can be tailored more to individual settings. For example, in N -way

classification, we could learn one context vector per class, instead of a joint one.

Another open questions is how to adapt when more generalisation (beyond

task identification) is required at test time. Mendonca et al. (2020) learn an

environment model with the same context-based approach as CAVIA, and if given

an out-of-distribution task at test time, first only adapt the context ξ of the

environment model, and then further continue updating θ until the model performs

well. This allows for efficient adaptation when there is a distribution shift, but

assumes knowledge of whether this shift occurs.
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Next Steps In our RL experiments, we have so far ignored the role of exploration.

The initial policy πθ is responsible for collecting the data with which the gradient

update is performed. Technically, Equation (5.2) in MAML and Equation (5.9)

in CAVIA optimise for this. In practice however, computing the correct higher-

order gradients in the RL setting is challenging and an actively researched problem

(Al-Shedivat et al., 2018; Stadie et al., 2018; Rothfuss et al., 2019; Liu et al.,

2021a; Vuorio et al., 2021).

Another drawback of using gradient-based adaptation is that this makes Online

Adaptation difficult. Recall from Section 3.2.2 that in the Online Adaptation

setting, we want the agent to perform well from the very first timestep it starts

interacting with the environment. If a gradient-update is only done after a handful

of rollouts (which is often necessary to collect a batch that is large enough to

perform a sensible update), adaptation happens too slowly. Lastly, we cannot

do Bayesian reasoning easily – something that is required for optimal adaptation

as we have seen in Section 2.2.

In the next chapter, we therefore introduce Bayesian reasoning over the context

parameters, and compute them using RNNs which allows us to update the context

after every environment step.
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For the RL experiments in the previous chapter, we assumed that the agent gets

to explore freely for some time, before being evaluated. But we might not always

have this luxury: in many situations we instead want the agent to perform well

from the first time that it starts interacting with its environment. In this Online
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Adaptation setting (see Sec 3.2.2), the agent has to carefully balance exploration

and exploitation (see Sec 2.1.6). In Section 2.2 we introduced Bayes-Adaptive MDPs

(Duff et al., 2002) and how they allow us to, in principle, compute policies that

optimally trade off exploration and exploitation during learning. Unfortunately,

doing so is intractable for all but the smallest tasks. In this chapter, we combine

ideas from Bayesian RL, approximate variational inference, and Meta-Learning

to tackle this challenge. Like in the previous chapter, we use a context vector to

summarise the task, but we now introduce Bayesian reasoning over this vector. This

allows the agent to take task uncertainty into account for exploration.

More specifically, we propose variational Bayes-Adaptive Deep RL (variBAD),

a way to meta-learn to perform approximate inference on an unknown task, and

incorporate task uncertainty directly during action selection. Given a distribution

over MDPs p(M), we represent a single MDP M using a learned, low-dimensional

stochastic latent variable m and simultaneously meta-train:

1. A variational auto-encoder that can infer the posterior distribution over m in a

new task, given the agent’s experience, while interacting with the environment.

2. A policy that conditions on this posterior belief – a probabilistic context –

over MDP embeddings, and thus learns how to trade off exploration and

exploitation when selecting actions under task uncertainty.

We first evaluate our approach on two toy domains, the Gridworld from Figure 2.1

in Section 2.2.2, and a 2D Navigation task. These help us illustrate how variBAD

maximises expected online return using the meta-learned approximate belief. A

preview showing that variBAD closely matches the hard-coded Bayes-optimal agent

from the Gridworld example is shown in Figure 6.1. We further evaluate variBAD

on the widely used MuJoCo Meta-RL benchmarks, and show that variBAD achieves

higher returns during learning compared to existing methods. Lastly, on the recently

proposed challenging Meta-World ML1 benchmark, variBAD achieves state of the

art performance with a large margin compared to existing methods, fully solving
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(a) VariBAD Behaviour

(b) Performance Comparison

Figure 6.1: VariBAD’s performance on the Gridworld from Section 2.2.2. (a)
Behaviour of variBAD at meta-test time. The grey background visualises the current
approximate belief (darker = higher probability of containing the goal). (b) VariBAD
closely matches Bayes-optimal behaviour, and significantly outperforms posterior sampling.

two out of the three ML1 benchmark tasks for the first time. As such, variBAD

opens a path to tractable approximate Bayes-optimal exploration for Deep RL.

6.1 Bayes-Adaptive Deep RL

The Online Return objective from Equation (3.2), Section 3.2.2, is maximised by the

Bayes-optimal policy, which automatically trades off exploration and exploitation:

it takes exploratory actions to reduce its task uncertainty only insofar as it helps

to maximise the expected return within the horizon. The BAMDP framework (see

Section 2.2.1) provides a principled way of formulating Bayes-optimal behaviour.

However, solving BAMDPs is hopelessly intractable for most interesting problems.

The main challenges are as follows.

• We often do not know how to parameterise the reward and transition model.

• The belief update (computing the posterior p(R, T |τ:t)) is often intractable.

• Even with the correct posterior, planning in belief space is typically intractable.

In the following, we propose a method that simultaneously meta-learns the reward

and transition functions, how to perform inference in an unknown MDP, and how

to use the belief to maximise expected online return. Since the Bayes-Adaptive



70 6.1. Bayes-Adaptive Deep RL

policy is learned end-to-end with the inference framework, no planning is necessary

at test time. We make minimal assumptions, resulting in a highly flexible and

scalable approach to Bayes-adaptive Deep RL.

This section is organised as follows. We start by describing how to represent

reward and transition functions, and (posterior) distributions over these. We then

consider how to meta-learn to perform approximate variational inference in a given

task, and finally put all the pieces together to form our training objective.

6.1.1 Task Contexts for BAMDPs

In the typical Meta-RL setting, the reward and transition functions that are unique to

each MDP are unknown, but also share some structure across the MDPsMi in p(M).

We know that there exists a true i which represents either a task description or task

ID, but we do not have access to this information. We therefore represent this value

using a learned stochastic latent variable mi. For a given MDPMi we can then write

Ri(rt+1|st, at, st+1) ≈ R′(rt+1|st, at, st+1;mi), (6.1)

Ti(st+1|st, at) ≈ T ′(st+1|st, at;mi), (6.2)

where R′ and T ′ are shared across tasks. Since we do not have access to the

true task description or ID, we need to infer mi given the agent’s experience up

to timestep t collected in Mi,

τ
(i)
:t = (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt, st).

I.e., we want to infer the posterior distribution p(mi|τ (i)
:t ) over mi given τ (i)

:t (from

now, we drop the sub- and superscript i for ease of notation).

Recall that our goal is to learn a belief over the MDPs, and given a posteriori

knowledge of the environment compute the optimal action. Given the above

reformulation, it is now sufficient to reason about the embedding m, instead of the

transition and reward dynamics. This is particularly useful when deploying deep

learning strategies, where the reward and transition function can consist of millions

of parameters, but the embedding m can be a small vector.
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6.1.2 Approximate Inference

Computing the exact posterior is typically not possible: we do not have access

to the MDP (and hence the transition and reward function), and marginalising

over tasks is computationally infeasible. Consequently, we need to learn a model of

the environment pψ(τ:H+|a:H+−1), parameterised by ψ, together with an amortised

inference network qφ(m|τ:t), parameterised by φ, which allows fast inference at

runtime at each timestep t. The action-selection policy is not part of the MDP, so

an environmental model can only give rise to a distribution of trajectories when

conditioned on actions, which we typically draw from our current policy, a ∼ π. At

any given timestep t, our model learning objective is thus to maximise

Eρ(M,τ:H+ ) [log pψ(τ:H+ |a:H+−1)] , (6.3)

where ρ(M, τ:H+) is the trajectory distribution induced by our policy and we slightly

abuse notation by denoting by τ the state-reward trajectories, excluding the actions.

In the following, we drop the conditioning on a:H+−1 to simplify notation.

Instead of optimising Equation (6.3) directly, which is intractable, we can

optimise a tractable lower bound, defined with a learned approximate posterior

qφ(m|τ:t) which can be estimated by Monte Carlo sampling:

Eρ(M,τ:H) [log pψ(τ:H)] = Eρ
[
log

∫
pψ(τ:H ,m)qφ(m|τ:t)

qφ(m|τ:t)
dm

]

= Eρ
[
logEqφ(m|τ:t)

[
pψ(τ:H ,m)
qφ(m|τ:t)

]]

≥ Eρ, qφ(m|τ:t)

[
log pψ(τ:H ,m)

qφ(m|τ:t)

]
= Eρ, qφ(m|τ:t) [log pψ(τ:H |m) + log pψ(m)− log qφ(m|τ:t)]

= Eρ
[
Eqφ(m|τ:t) [log pψ(τ:H |m)]−KL(qφ(m|τ:t)||pψ(m))

]
= ELBOt. (6.4)

The term Eq[log p(τ:H+|m)] is referred to as the reconstruction loss, and pψ(τ:t|m)

as the decoder. The term KL(q(m|τ:t)||pψ(m)) is the KL-divergence between our

variational posterior qφ and the prior over the embeddings pψ(m).
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Instead of using the same fixed prior for each timestep and ELBOt, we set the

prior to our previous posterior, qφ(m|τ:t−1), with initial prior qφ(m) = N (0, I). We

thus have KL(qφ(m|τ:t)||qφ(m|τt−1)). This is akin to a Bayesian filtering update,

and works better empirically, as we confirm in Section 6.4.3. We take the gradient

w.r.t. the entire term (i.e., through the current and previous approximate posterior).

The reconstruction term in the ELBO (6.4) is different than in the standard

VAE (Sec 2.1.3 Kingma et al., 2014)). At timestep t, we encode the past trajectory

τ:t to get the current posterior qφ(m|τ:t). We then decode the entire trajectory τ:H+

including the future, i.e., model Eqφ [pψ(τ:H+ |m)], which is possible because we have

access to this information during meta-training. Decoding not only the past but

also the future is important because this way, variBAD learns to perform inference

about unseen states given the past. We confirm this empirically in Section 6.3.

The reconstruction term log pψ(τ:H+|m) factorises as

log pψ(τ:H+ |m, a:H+−1)

= log pψ((s0, r0, . . . , st−1, rt−1, st)|m, a:H+−1) (6.5)

= log pψ(s0|m) +
H+−1∑
i=0

[log pψ(si+1|si, ai,m)+ log pψ(ri+1|si, ai, si+1,m)] .

Here, pψ(s0|m) is the initial state distribution T ′0, pψ(si+1|si, ai;m) the transition

function T ′, and pψ(ri+1|st, at, si+1;m) the reward function R′. Below, we include

T ′0 in T ′ for ease of notation.

6.1.3 Training Objective

We can now formulate a training objective for learning the approximate posterior dis-

tribution over task embeddings, the policy, and the generalised reward and transition

functions R′ and T ′. We use deep neural networks to represent the components:

1. A recurrent encoder qφ(m|τ:t), parameterised by φ.

2. An approximate transition function T ′ = pTψ(si+1|si, ai;m) and approximate

reward function R′ = pRψ (ri+1|st, at, si+1;m), jointly parameterised by ψ.

3. A policy πθ(at|st, qφ(m|τ:t)) parameterised by θ and dependent on φ.
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Figure 6.2: VariBAD architecture: A trajectory of states, actions and rewards is
processed online using an RNN to produce the posterior over task embeddings, qφ(m|τ:t).
The posterior is trained using a decoder which predicts past and future states and rewards
from current states and actions. The policy conditions on the posterior in order to act in
the environment and is trained using RL.

An overview of the network architecture is shown in Figure 6.2.

The policy πθ(at|st, qφ(m|τ:t)) is conditioned on the environment state st and

the current approximate belief bt ≡ qφ(m|τ:t) over m. This is similar to the

formulation of BAMDPs introduced in Section 2.2, with the difference that we learn

a unifying distribution over MDP embeddings, instead of the transition/reward

function directly. This makes learning easier since there are fewer parameters to

perform inference over, and we can use data from all tasks to learn the shared

reward/transition function. The posterior can be represented by the distribution’s

parameters (e.g., mean and standard deviation if q is Gaussian).

Our overall objective is to maximise

L(φ, ψ, θ) = Ep(M)

J (θ, φ) + λ
H+∑
t=0

ELBOt(φ, ψ)
 , (6.6)

where J(θ, φ) is the expected return as defined in Section 2.2.
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6.1.4 Meta Training

During meta-training, we train the policy and the VAE using Equation (6.6).

In Equation (6.6), λ weights the supervised model learning objective against

the RL loss. This is necessary since parameters φ are shared between the VAE

and the policy. However, we found that backpropagating the RL loss through

the encoder is typically unnecessary in practice. Not doing so speeds up training

considerably, avoids the need to trade off these losses, and prevents interference

between gradients of opposing losses. In ablation studies (see Appendix B) we

found that backpropagating both losses through the encoder can marginally improve

performance in some cases, but can be detrimental in others, and depends strongly

on the relative weighting between the VAE and the RL loss. In our experiments,

we therefore optimise the policy and VAE alternatingly with separate optimisers.

Meta-Training the VAE The VAE is trained by approximating expectations in

Equation 6.6 using Monte Carlo samples, and using the reparameterisation trick

(Kingma et al., 2014). For t = 0, we use the prior qφ(m) = N (0, I). We encode

past trajectories using a recurrent network, but other types of encoders could be

considered like the ones used in Zaheer et al. (2017), Garnelo et al. (2018b), and

Rakelly et al. (2019). The encoder outputs an approximate belief over the current

task m, by predicting the mean and variance of a Gaussian distribution. The

decoder is trained using samples from this approximate posterior, and by separately

predicting the rewards and state transitions of the entire current trajectory (i.e.,

including future steps to which we have access during meta-training).

Equation (6.6) shows that the ELBO appears for all possible context lengths

t. This way, variBAD can learn to perform inference online (while the agent is

interacting with an environment), and decrease its uncertainty over time given

more data. In practice, we may subsample a fixed number of ELBO terms for

computational efficiency if H+ is large.
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Meta-Training the Policy We meta-train the policy using proximal policy

optimisation (Schulman et al., 2017, PPO), but other methods can in principle be

used, including off-policy methods (see Dorfman et al. (2021)). The policy receives

the approximate belief as an input in addition to the state, allowing it to meta-learn

how to act approximately Bayes-optimal. This approximate belief, qφ(m|τ:t), is

represented by two vectors: the mean and variance of a Gaussian distribution

with diagonal covariance matrix. These vectors are predicted by the encoder, and

concatenated with the environment state before being passed to the policy. In our

experiments, the RL loss is not backpropagated through the encoder. We train the

RL agent and the VAE using different data buffers: the policy is only trained with

the most recent data since we use an on-policy algorithm in our experiments; and

for the VAE we maintain a separate, larger buffer of observed trajectories.

Meta Testing At meta-test time, we roll out the policy in randomly sampled

test tasks to evaluate performance, by performing forward passed through the

encoder (to compute the approximate belief) and the policy (to choose how to act

given the state and approximate belief). The belief is updated after every step

by feeding in the new (state, action, reward) tuple, allowing the agent to adapt

online. The decoder is not used at test time, and no gradient updates are performed

on the encoder or policy network: the agent has learned to act approximately

Bayes-optimal during meta-training.

6.2 Related Work

VariBAD opens a path to tractable approximate Bayes-optimal exploration for

Deep RL by leveraging ideas from Meta-Learning and approximate variational

inference, with the only assumption that we can meta-train on a set of related tasks.

Existing approximate Bayesian RL methods often require an explicit prior and belief

update on the reward and transition functions, and rely on (possibly expensive)

sample-based planning procedures. Due to the use of deep neural networks however,

variBAD lacks the formal guarantees enjoyed by some of these methods.
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Meta-Learning Bayes-Adaptive Policies It has been shown theoretically

(Ortega et al., 2019) and empirically (Mikulik et al., 2020) that meta-trained agents

approximate Bayes-optimal agents on the given task distribution. A prominent

model-free meta-RL approach to this problem is to use the dynamics of recurrent

networks for fast adaptation (Wang et al., 2016; Duan et al., 2016). At every

timestep, the network receives an auxiliary input consisting of the preceding action

and reward. This allows learning within a task to happen online, entirely in the

dynamics of the recurrent network, and no gradient adaptation is needed at meta-

test time. If we remove the decoder (Fig 6.2) and the VAE objective (Eq (6.3)),

variBAD reduces to this setting, i.e., the main differences are that we use a stochastic

latent variable (an inductive bias for representing uncertainty), together with a

decoder to reconstruct previous and future transitions and rewards (which acts as

an auxiliary loss to encode the task in latent space and deduce information about

unseen states). While model-free Meta-Learning methods (Wang et al., 2016; Duan

et al., 2016) can meta-learn approximately Bayes-optimal policies (Ortega et al.,

2019; Mikulik et al., 2020), we show empirically that they do not scale as well in

terms of performance as variBAD. In addition, variBAD provides explicit belief

representations, which can be used in downstream tasks or for auxiliary tasks.

Closely related to our approach is the work of Humplik et al. (2019). Like

variBAD, their algorithm conditions the policy on a meta-learned approximate

belief. This approximate belief is learned using privileged information during meta-

training such as a task description. In comparison, variBAD meta-learns to represent

the belief in an unsupervised way, and does not rely on privileged task information.

Building on the conference version of this work (Zintgraf et al., 2020), Dorfman

et al. (2021) propose a method to meta-learn Bayes-adaptive policies from offline

data, and additionally demonstrate good results when using an off-policy variant

of variBAD. They use variBAD with the off-policy algorithms DQN (Mnih et al.,

2015) (for discrete control) and SAC (Haarnoja et al., 2018) (for continuous control),

demonstrating that variBAD can be combined with different RL algorithms.
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Other Meta Reinforcement Learning Settings Another popular approach

to Meta-RL is to learn an initialisation of the model, such that at test time, only

a few gradient steps are necessary to achieve good performance (Sec 4.1; Finn

et al., 2017a; Nichol et al., 2018; Stadie et al., 2018; Rothfuss et al., 2019). These

typically consist of a feed-forward policy and are therefore relatively lightweight.

RL2 and variBAD use recurrent modules, which increases model complexity but

allows online adaptation. Other methods that perform gradient adaptation at test

time are, e.g., Houthooft et al. (2018) who meta-learn a loss function conditioned on

the agent’s experience that is used at test time to learn a policy (from scratch); and

Sung et al. (2017) who learn a meta-critic that can criticise any actor for any task,

and is used at test time to train a policy. Compared to variBAD, these methods

separate exploration (before gradient adaptation) and exploitation (after gradient

adaptation) at test time by design, making them less sample efficient.

A related approach for inter-task transfer of abstract knowledge is to pose

policy search with priors as Markov Chain Monte Carlo inference (Wingate et al.,

2011). Similarly Guez et al. (2013) propose a Monte Carlo Tree Search method

for Bayesian planning for tractable, sample-based approximately Bayes-optimal

behaviour. Osband et al. (2018) note that non-Bayesian treatment for decision

making can be arbitrarily suboptimal and propose a simple randomised prior based

approach for structured exploration. Some recent deep RL methods use stochastic

latent variables for structured exploration (Gupta et al., 2018; Rakelly et al., 2019),

which gives rise to behaviour similar to posterior sampling. Other ways to use the

posterior for exploration are, e.g., certain reward bonuses (Kolter et al., 2009; Sorg

et al., 2012) and methods based on optimism in the face of uncertainty (Kearns et al.,

2002; Brafman et al., 2002). Non-Bayesian methods for exploration are often used

in practice, such as other exploration bonuses (e.g., via state-visitation counts) or

using uninformed sampling of actions (e.g., ε-greedy action selection). Such methods

are prone to wasteful exploration that does not help maximise expected reward.
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Contextual MDPs Related to BAMDPs are contextual MDPs, where the task

description is referred to as a context, on which the environment dynamics and

rewards depend (Hallak et al., 2015; Jiang et al., 2017; Dann et al., 2019; Modi

et al., 2019). Research in this area is often concerned with developing tight

bounds by putting assumptions on the context, such as having a small known

number of contexts, or that there is a linear relationship between the contexts and

dynamics/rewards. Similarly, the framework of hidden parameter (HiP-) MDPs

assumes that there is a set of low-dimensional latent factors which define a family

of related dynamical systems (with shared reward structure). The assumptions in

this line of work are similar to the assumption we make in Equations (6.1) and (6.2)

(Doshi-Velez et al., 2016; Killian et al., 2017; Yao et al., 2018). These methods

however do not directly learn Bayes-optimal behaviour; instead, they allow for a

longer training period in new environments to infer the latents and train the policy.

Skill and Task Embeddings Learning (variational) task or skill embeddings for

meta or transfer reinforcement learning is used in a variety of approaches. Hausman

et al. (2018) use approximate variational inference to learn an embedding space of

skills (using a different lower bound than variBAD). At test time a new embedder

is learned that interpolates between learned skills. Arnekvist et al. (2019) learn

a stochastic embedding of optimal Q-functions for different skills, and condition

the policy on (samples of) this embedding. Adaptation at test time is done in

latent space. Co-Reyes et al. (2018) learn a latent space of low-level skills that

are controlled by a higher-level policy, framed within a hierarchical RL setting.

This embedding is learned using a VAE to encode state trajectories and decode

states and actions. Similar to variBAD, Zhang et al. (2018) use learned dynamics

and reward modules to learn a latent representation which the policy conditions.

They show that transferring the (fixed) encoder to new environments helps learning.

Perez et al. (2018) learn dynamic models with auxiliary latent variables, and use

them for model-predictive control. Lan et al. (2019) learn a task embedding where

the encoder is updated at test time using gradient descent, and the policy is fixed.
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Sæmundsson et al. (2018) explicitly learn an embedding of the environment model,

which is subsequently used for model predictive control (and not, like in variBAD,

for exploration). In the field of imitation learning, some approaches embed expert

demonstrations to represent the task; e.g., Wang et al. (2017) use variational

methods and Duan et al. (2017) learn deterministic embeddings.

VariBAD differs from the above methods mainly in what the embedding

represents (i.e., task uncertainty) and how it is used: the policy conditions on

the posterior distribution over MDPs, allowing it to reason about task uncertainty

and trade off exploration and exploitation online. Our objective in Equation

(6.4) explicitly optimises for Bayes-optimal behaviour. Unlike some of the above

methods, we do not use the model at test time, but model-based planning is a

natural extension for future work.

Variational Inference and Meta-Learning A main difference of variBAD to

many existing Bayesian RL methods is that we meta-learn the inference procedure,

i.e., how to do a posterior update. Apart from (RL) methods mentioned, related

work in this direction can be found, a.o., in Garnelo et al. (2018b), Gordon et al.

(2019), and Choi et al. (2019). In contrast to these supervised settings, variBAD’s

inference procedure is tailored to Bayes-optimal RL, a sequential setting where

the objective of inference is to model beliefs over MDPs.

Partially Observable Markov Decision Processes (POMDPs) Several deep

learning approaches to model-free Reinforcement Learning (Igl et al., 2018) and

model learning for planning (Tschiatschek et al., 2018) in partially observable Markov

decision processes have recently been proposed and use approximate variational

inference methods. VariBAD by contrast focuses on BAMDPs (Martin, 1967; Duff

et al., 2002; Ghavamzadeh et al., 2015), a special case of POMDPs where the

transition and reward functions constitute the hidden state and the agent must

maintain a belief over them. While in general the hidden state in a POMDP can

change at each time-step, in a BAMDP the underlying task, and therefore the

hidden state, is fixed per task. We exploit this property by learning an embedding
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that is fixed over time, unlike approaches like the one by Igl et al. (2018) which

use filtering to track the changing hidden state. While we use the power of deep

approximate variational inference, other approaches for BAMDPs often use more

accurate but less scalable methods, e.g., Lee et al. (2019a) discretise the latent

distribution and use Bayesian filtering for the posterior update.

6.3 Empirical Evaluation

In this section we first investigate the properties of variBAD on the didactic

Gridworld domain from Figure 2.1. These results show that variBAD performs

structured and online exploration as it infers the task. We then evaluate variBAD

on several more challenging domains: a sparse 2D navigation task, a range of

tasks from the MuJoCo benchmark, and the Meta-World ML1 benchmark. On

these, variBAD achieves state of the art performance. In Section 6.4, we perform

ablation studies to motivate our design choices, and test how robust variBAD

is to the size of the latent space.

The two main baselines we consider are RL2 (Duan et al., 2016; Wang et al.,

2016) and PEARL (Rakelly et al., 2019). RL2 can be seen as a model-free version

of variBAD. As discussed in Section 4.2, RL2 can learn to act approximately

Bayes-optimal by performing task inference in the recurrent state of the RNN. RL2

only consists of an encoder and a policy, and trains both end-to-end using an RL

loss only. PEARL is akin to posterior sampling. Recall from Section 2.2.2 that

posterior sampling is a sub-optimal exploration strategy in theory compared to

Bayes-optimal exploration (see Figure 2.1), but has the advantage that computing

the optimal policy for a single MDP (sample from the approximate posterior) is

more tractable than doing so in a BAMDP.

For experimental details, hyperparameters, and additional results, see Appendix

B. Source code is available at https://github.com/lmzintgraf/varibad.

https://github.com/lmzintgraf/varibad
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6.3.1 Gridworld

To gain insight into variBAD’s properties, we start with the didactic Gridworld

environment from Figure 2.1a. The task is to reach a goal in a 5× 5 grid. The goal

can be anywhere except around the starting cell, which is at the bottom left, and is

selected uniformly at random. The goal is unobserved by the agent, inducing task

uncertainty and necessitating exploration. Actions are: up, right, down, left, stay,

and are executed deterministically. The horizon within the MDP is H = 15, and

we set the horizon in the BAMDP to H+ = 4 ×H = 60, i.e., we train our agent

to maximise performance for 4 MDP episodes. After 15 steps the agent is reset to

its starting position (but the goal stays the same). The agent gets a sparse reward

signal: −0.1 on non-goal cells, and +1 on the goal cell (repeatedly if the agent stays

on the goal). We use a latent dimensionality of 5 (see Sec 6.4.1 for how latent size

affects performance). The Bayes-optimal strategy is to explore until the goal is found

(Fig 2.1b), and stay at the goal or return to it when reset to the initial position.

Figure 6.3 illustrates how variBAD behaves at test time with deterministic

actions (i.e., all exploration is done by the deterministic policy, not via sampling).

In Figure 6.3a we see how the agent interacts with the environment over the course

of three episodes (with a fixed goal), with the red background visualising the

approximate posterior belief, using the learned reward function. VariBAD learns

the correct prior and adjusts its belief correctly over time: It predicts no reward for

cells it has visited, and high expected rewards for unvisited cells. It explores the

remaining cells until it finds the goal, at which point its posterior collapses to the

correct task. As the agent gathers more data, more and more cells are excluded

(p(rew=1) = 0, white cells), until eventually the agent finds the goal.

Figure 6.3b show the reward predictions: each line represents a grid cell and

its value the probability of receiving a reward at that cell. As the agent gathers

more data, more cells are excluded (p(rew=1) = 0). When the agent finds the goal,

the predictions correspond to the true reward function. Figure 6.3c visualises the

latent space. Once the agent finds the goal, the posterior concentrates: the variance

drops close to zero, and the mean converges to a fixed value.
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(a) Example Rollout

(b) Reward Predictions (c) Latent Space

Figure 6.3: Behaviour of variBAD in the Gridworld environment. (a) Hand-
picked but representative example test rollout. The red background indicates the posterior
probability of receiving a reward at that cell. (b) Probability of receiving a reward for
each cell, as predicted by the decoder, over the course of interacting with the environment
(average in black, goal state in green). (c) Visualisation of the 5-dimensional latent space;
each line is one latent dimension, the black line is the average.

The behaviour of variBAD closely matches that of the Bayes-optimal policy

(shown in Figure 2.1). Our results on this Gridworld indicate that variBAD is an

effective way to approximate Bayes-optimal control, and has the additional benefit

of giving insight into the task belief of the policy.
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(a) Meta-Test Performance

(b) VariBAD example rollout (c) PEARL example rollout

Figure 6.4: Meta-test performance on the Sparse 2D Navigation environment.
(a): Performance at meta-test time (averaged over the task distribution). (b) and (c):
Example rollouts of meta-trained variBAD (b) and PEARL (c) agents. PEARL does not
optimize for optimal exploration, and thus it requires many more episodes to find the
goal. On the other hand, variBAD optimises for optimal exploration, efficiently covering
possible goal locations, and is able to quickly find the goal.

6.3.2 Sparse 2D Navigation

We evaluate on a Point Robot 2D navigation task used by Gupta et al. (2018),

Rakelly et al. (2019), and Humplik et al. (2019), to further illustrate how variBAD

performs online adaptation. The agent must navigate to an unknown goal sampled

along the border of a semicircle of radius 1.0, and receives a reward relative to

its proximity to the goal when it is within a goal radius of 0.2. Since this is a

sparse reward environment, the Bayes-optimal exploration strategy includes walking

along the semi-circle until the goal is found.

Figure 6.4 shows the average performance of PEARL, RL2, and variBAD at

test time, when rolling out the agent for 30 episodes in a single task. VariBAD

adapts much faster to the task compared to PEARL. RL2 also adapts rapidly

but is less stable compared to variBAD when rolled out for a much longer time

than during training: both variBAD and RL2 were trained to perform well over

three consecutive episodes.

To shed light on the performance difference between variBAD and PEARL,

Figures 6.4b and 6.4c visualise representative example rollouts for meta-trained

variBAD and PEARL agents. We picked examples where the target goals are

at the end of the semi-circle, which we found are most difficult for the agent.
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PEARL performs posterior sampling for exploration which means it is restricted

to a fixed hypothesised goal position during each rollout. On the other hand,

variBAD (Figure 6.4b) strategically explores the space within an episode to find

the goal, which is more efficient. Once the goal is found, both variBAD and

PEARL are able to quickly return to it.

The two toy experiments, Gridworld and PointRobot, illustrate how variBAD

makes decisions: it adapts to the task online while updating the approximate belief,

which allows it to rapidly adapt to new tasks. In the following sections, we test

variBAD on more challenging meta-RL benchmarks, MuJoCo and Meta-World ML1.

6.3.3 MuJoCo Continuous Control Meta-Learning Tasks

We show that variBAD can scale to more complex Meta-Learning settings by

employing it on MuJoCo (Todorov et al., 2012b) locomotion tasks commonly

used in the meta-RL literature.1 We consider the Ant-Dir, HalfCheetahDir, and

Humanoid environments, where the agent has to run either forwards or backwards

(i.e., there are only two tasks); the HalfCheetahVel environment where the agent

has to run at different velocities; the Ant-Goal environment where the agent has

to navigate to an initially unknown goal position; and the Walker environment

where the system parameters are randomised. The rewards in these environments

are dense, so that in principle the agent only needs a few exploratory actions to

infer the task by observing the rewards it receives.

VariBAD and RL2 were trained to maximise performance within two episodes

(mainly so that we can roll them out for multiple episodes at test time; we are

primarily interested in their adaptation behaviour within the first episode). PEARL

(Rakelly et al., 2019), was trained using the open sourced code2, to maximise

performance after 3-5 episodes, depending on the environment. E-MAML (Stadie

et al., 2018) and ProMP (Rothfuss et al., 2019) were trained using the open sourced
1The MuJoCo environments are taken from https://github.com/katerakelly/oyster .
2The implementation which we used for our PEARL experiments was published by Rakelly

et al. (2019) and can be found at https://github.com/katerakelly/oyster .

https://github.com/katerakelly/oyster
https://github.com/katerakelly/oyster
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Figure 6.5: Average test performance on six different MuJoCo environments,
trained separately with 10 seeds per MuJoCo environment per method. The meta-trained
policies are rolled out for 5 episodes to show how they adapt to the task. Values shown
are averages across tasks (95% confidence intervals shaded). Being an online adaptation
method, variBAD adapts within the first episode. It outperforms other methods, even
when these are given longer than one episode to adapt, and even though the first episode
includes exploratory actions. RL2 is also an online adaptation method and can adapt
to the task within the first episode. On most environments, variBAD outperforms RL2

(Wang et al., 2016; Duan et al., 2016) significantly. The other methods, PEARL (Rakelly
et al., 2019), E-MAML (Stadie et al., 2018), and ProMP (Rothfuss et al., 2019), need at
least one episode to adapt by design.
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code by Rothfuss et al. (2019)3, to maximise performance after 1 gradient step on

10-20 rollouts. To get an approximate upper bound on performance, we train a

multi-task agent which conditions on a task descriptor, and an ensemble of expert

agents (one per task) whose performances are averaged, using PPO.

Figure 6.5 shows the average performance at test time across different tasks.

While we show the return of the agent during the first five rollouts, we emphasise

that our primary interest lies in the agent’s performance during the first episode,

while learning about the environment, which tells us how well the agent can trade

off exploration and exploitation.

Only variBAD and RL2 are able to adapt to the task at hand within a single

episode. VariBAD outperforms RL2 in all environments except HalfCheetahVel

where they are on par, and is close to the multi-task agent’s performance in

several environments. We generally found that learning with RL2 is slower and

less stable (see learning curves and runtime comparisons in Appendix B.2). We

hypothesise that this is because the reinforcement learning loss is backpropagated

through an RNN. In variBAD on the other hand, we train the encoder RNN with

a supervised loss only. Even though the first rollout includes exploratory steps,

this matches the optimal multitask policy (which is conditioned on the true task

description) up to a small margin.

The methods PEARL (Rakelly et al., 2019), E-MAML (Stadie et al., 2018), and

ProMP (Rothfuss et al., 2019) are not designed to maximise reward during a single

rollout, and perform poorly in the first episode. They all require substantially more

environment interactions in each new task to achieve good performance. PEARL,

which is akin to posterior sampling, only starts performing well starting from

the third episode. We evaluated E-MAML and ProMP by performing gradient

steps after every episode; however, they are typically updated after collecting

data for 20 episodes.
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Method Episode Reach Push Pick-Place
MAML∗ 10 48 74 12
PEARL∗ 10 38 71 28
RL2∗ 10 45 87 24
variBAD 1 100 100 29 (6/20 seeds)
variBAD 2 100 100 29

Table 6.1: Meta-test success rates on the ML1 Meta-World benchmark (v1).
∗Results taken from Yu et al. (2019). VariBAD was trained to maximise the expected
return of 2 episodes (20 seeds per setting). The first episodes often include exploratory
actions, yet variBAD has higher success rate in episode 1 than existing methods. For the
Pick-Place results, in brackets we report the number of seeds that learned something.

6.3.4 Meta-World

Finally, we evaluate variBAD on the challenging Meta-World ML1 benchmark

(v1; Yu et al., 2019), which has emerged as a key challenge for the Meta-Learning

community. In the Meta-World environment, a robot arm has to perform different

tasks like pushing objects to an (initially unknown) target location. There are

three variants of the ML1 benchmark: Reach (the robot has to reach different goal

positions), Push (the robot arm has to push objects to different goal positions), and

Pick-Place (the robot arm has to pick up an object, and place it near a target goal).

Table 6.1 shows the results for variBAD and several baselines on the ML1

benchmark. VariBAD achieves state of the art results. On Reach and Push,

variBAD outperforms the previous state of the art results by a significant margin,

and is the first to fully solve these tasks. On the harder task Pick & Place, variBAD

performs on par with PEARL. Though the benchmark allows for up to 10 episodes

for adaptation, we train variBAD to optimise expected online return within two

episodes. As these results show, variBAD can adapt rapidly even within the first

episode, which includes exploratory actions. On the Pick-Place task, variBAD either

learns to solve the task (6 seeds), or it does not meta-learn at all (14 seeds).

3The implementation which we used for our E-MAML and ProMP experiments was published
by Rothfuss et al. (2019) and can be found at https://github.com/jonasrothfuss/ProMP .

https://github.com/jonasrothfuss/ProMP
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6.4 Empirical Analysis

In this section, we examine how variBAD’s performance varies with latent size. We

further study the impact of different VAE loss formulations on the performance

and approximate beliefs to shed light on our design choices.

6.4.1 Belief Dimensionality

In this section, we examine how the size of the latent belief impacts performance

in Figure 6.6, for the Gridworld and Ant-Goal tasks. As expected, if the latent

dimensionality is too small, then not all relevant information can be retained and

the policy is unable to adapt to different tasks. This only happens when using

a dimensionality of size 1 or 2, and any choice larger than this leads to decent

performance. Interestingly, very large parameterisations (1000 for Gridworld and

300 for AntGoal which was the maximum we could fit into the memory of a single

GPU) have a comparatively minute impact despite artificially increasing the size of

the state space on which the policy acts. In practice this means that as long as we

do not underparameterise the latent dimension, we achieve good performance.

Figure 6.6: Normalised performance for different number of latent features,
for the Gridworld and Ant environment. As long as the latent is not underparameterised,
variBAD achieves good performance. Only when vastly overparameterising the latent we
see a small performance decrease.
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6.4.2 Modelling Horizon

When formulating our objective in Equation (6.3), we argue that at any time t in

its trajectory, an agent should be able to model entire trajectories. In Equation

(6.5) we see that this amounts to reconstructing transitions and rewards from the

past (≤ t) and the future (> t). The intuition is that the VAE has to represent

the task information in its belief, which encompasses a sufficient statistic about

transitions the agent has already observed, and a belief about transitions it can

observe in the future. To analyse this choice empirically, we test how different

“modelling horizons” affect performance and the learned beliefs: modelling only the

past (≤ t), only the future (> t), or only one step into the future (t + 1).

Figure 6.7 shows the resulting learning curves for the Gridworld, Mujoco AntGoal,

and PointRobot tasks. The traditional VAE approach of reconstructing only

the embedded part of the trajectory (past) tends to produce latent codes not

sufficiently informative to predict future transitions and therefore leads to suboptimal

performance. Similarly, targeting only the subsequent transition (next) does not

encode sufficient information to reliably inform the policy. While decoding only the

entire remainder of the observed training trajectories (future) performs well, we

find that this has an undesired effect on the learned beliefs, discussed below.

Figure 6.8 visualises the approximate belief for different decoding targets in

the Gridworld environment. We do so by plotting the reward predictions of the

decoder from the VAE latent for each cell in the grid. Decoding only the past or

only the next step leads to embeddings that predict no or only spurious rewards

until the goal has been found (Figures 6.8b and 6.8d). Only decoding the future

enables learning about the rewards prior to actually encountering them, but leads to

spurious predictions for visited states (Figure 6.8c): predictions of non-zero rewards

at visited non-goal states are not penalised, as these are unlikely to be revisited.

These artefacts are cleared up by decoding full trajectories (Figure 6.8a), which

is the default setting we chose for the variBAD objective.
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Figure 6.7: Performance of VAE decoding targets for (from left): Gridworld,
AntGoal, and Pointrobot (15/5/20 seeds). VariBAD’s default settings (modelling the
past and future) perform well. Other choices either underperform (modelling only the
past or only the next step), or have undesired effects on the beliefs (Fig 6.8c).

(a) Model All (variBAD) (b) Model Past

(c) Model Future (d) Model Next Step

Figure 6.8: Belief visualisation in the Gridworld for different decoding targets.
Compared to the default variBAD objective which models the past and future (a), the
approximate belief is less accurate for other decoding targets. In (b) the agent only
decodes the past. It assigns low probability to all cells, when the goal is not found yet.
This minimises the loss: for seen cells it correctly predicts that they do not contain the
goal. For unseen cells it incorrectly predicts the same, but this is not penalised in the loss.
In (c) the agent only decodes the future. For unseen cells it correctly predicts that they
could contain the goal. For seen cells the loss does not incentivise it to predict the correct
thing and predictions are noisy. We believe some predictions are zero since there is a
chance of re-visiting states. In (d) the agent only predicts the immediate-next step, and
assigns non-zero probability to these, when it has not found the goal. All methods (a)-(d)
learn to correctly predict the goal position with high certainty once they have found it.
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Figure 6.9: Performance of different KL regularisations in the VAE. Domains
from left to right are Gridworld (15 seeds), Ant-Goal (5 seeds) and Pointrobot (20 seeds).
Using the filtering KL objective performs well consistently across these environments.
Using the KL to a fixed prior works well except in the PointRobot environment. We
hypothesise this is due to the sparsity of the environment, and the fact that “excluding”
certain regions without rewards becomes more challenging when the prior is fixed.

6.4.3 KL Regularisation

The second component of the ELBO, the KL term between the posterior and prior,

acts as a regulariser and prior for the latent codes. In the variBAD objective, the

prior is set to the previous approximate posterior, i.e., the KL term is defined as

KL(qφ(m|τ:t)||qφ(m|τt−1)), which is akin to Bayesian filtering. The gradient is taken

w.r.t. both terms in the KL. In this subsection, we empirically motivate this choice,

by comparing to using a fixed standard Normal distribution as a prior, N (0, I),

across all times steps (“fixed prior”), detaching the gradient of the approximate

previous posterior, or not doing KL regularisation.

The learning curves are shown in Figure 6.9 for the Gridworld, AntGoal, and

Pointrobot environment, and visualisations of the learned approximate beliefs in

the Gridworld are shown in Figure 6.10. Using a fixed prior is not sufficiently

flexible to allow the learning of good latent codes in all cases: the performance

is significantly worse in PointRobot (Fig 6.9, right), and when rolling out the

meta-learned policy the variance increases sharply after the agent finds the goal

in the Gridworld (Fig 6.10c). This is undesirable—the variance should collapse

once the agent is certain about the task. By forcing the VAE to adhere to a fixed

prior we artificially increase uncertainty as the embedding is encouraged to regress

towards the prior even once the goal has been identified.
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(a) Filtering KL (b) Detach Gradient (c) Fixed Prior (d) No KL

Figure 6.10: Visualisation of latent estimates for different decoding targets,
for a representative Gridworld rollout. The agent finds the goal after ∼ 25 steps. When
using a filtering KL (variBAD’s default setting), the variance collapses once the goal is
found (a). When using a fixed Gaussian prior (c), the posterior behaves unexpectedly:
the variance increases once the goal is found. Detaching the gradient of the previous
belief (b) or no using KL regularisation (d) sets the variance to zero.

When training with the default variBAD objective we get reasonable variance

estimates that decay with progressing exploration and collapse when the goal is

found (Fig 6.10a). Using no KL regularisation at all slightly reduces performance

(Fig 6.9) and a total collapse in variance (Fig 6.10c). A lack of regularisation

allows the VAE to encode observed trajectories as point masses with no variance,

indicating it overfits by producing a unique code for each of them. Detaching the

gradient on the previous approximate posterior significantly harms performance in

all cases (Fig 6.9) and yields an inflexible latent space (Fig 6.10b).

6.5 Discussion

Conclusion We presented variBAD, a novel Meta-RL method to learn approxi-

mately Bayes-optimal behaviour, which uses Meta-Learning to exploit knowledge

obtained in related tasks and perform approximate inference in unknown environ-

ments. In a didactic Gridworld environment, our agent closely matches Bayes-

optimal behaviour, and in more challenging MuJoCo tasks, variBAD outperforms

existing methods in terms of achieved reward during a single episode. On the

recently proposed Meta-World ML1 benchmark, variBAD outperforms existing
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methods by a large margin and fully solves two out of the three benchmark tasks

for the first time. In summary, we believe variBAD opens a path to tractable

approximate Bayes-optimal exploration for Deep Reinforcement Learning.

Open Questions There are several interesting directions of future work based on

variBAD. For example, we currently do not use the decoder at test time, but it could

be used for online planning, or to get a sense for how wrong the predictions are (which

might indicate we are out of distribution, and further training is necessary). Another

exciting direction for future research is considering settings where the training and

test distribution of environments are different. Generalising to out-of-distribution

tasks poses additional challenges and in particular for variBAD two problems are

likely to arise: the inference procedure will be wrong (the prior and/or posterior

update) and the policy will not be able to interpret a changed posterior. In this

case, further training of both the encoder/decoder might be necessary, together with

updates to the policy and/or explicit planning. We discuss these directions in more

detail with some empirical examples in the concluding part of this thesis, Chapter 9.

In the next chapter, we use the lessons learned in variBAD to look a different

set of problems: Multi-Agent Reinforcement Learning. Here, the “task” does not

differ in the reward and transition function, but in the other agents that are present

in the environment. This can be more challenging because the agent’s own actions

influence the other agents’ future actions, meaning it has to track the other agents’

current internal state as well. This means we are in a more general POMDP, and

we have to model the other agents differently.
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In the previous chapters, we considered Fast Adaptation settings where an agent is

faced with a new environment or task, and has to rapidly adapt to this. Throughout,

we assumed that the agent is alone in its environment, i.e., no other artificial or

human agents are present. In most real world settings however, there will likely

also be other artificial or human agents in the environment. When multiple agents

interact in the same environment, they influence each other through their actions:
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either directly by cooperating, communicating, or competing; or indirectly by

affecting the state of the world. For example, playing a game of soccer with a new

team requires learning about each player’s role and coordinating actions; driving

a car through busy traffic requires anticipating other drivers’ moves and reacting

to these appropriately; and successfully teaching a complex subject to a student

requires adjusting the teaching method to their learning style.

A desirable capability of artificial agents is therefore the ability to adapt to other

(human or artificial) in an ad-hoc way. Contrary to our previous set-up, we are now

in an interactive setting, where our agent’s actions influence how the other agents

react. This makes belief modelling more challenging. The framework for computing

Bayes-optimal such agents in a multi-agent setting is called Interactive Bayesian

Reinforcement Learning (IBRL; Chalkiadakis et al., 2003; Hoang et al., 2013).

This approach requires maintaining a belief over the other agents’ strategies, and

computing the optimal action given that belief. Similar to the BAMDP framework

(see Section 2.2.1), the IBRL framework is incredibly powerful, since its solution –

a Bayes-optimal policy – yields agents that adapt in the best possible way to other

agents. Unfortunately, computing this solution is intractable for most interesting

problems, and existing approximation methods are restricted to small environments

and simple agent models (Chalkiadakis, 2007; Hoang, 2014).

In this chapter, we argue that the IBRL framework is a useful proxy for

learning adaptive policies, and propose Meta Learning Interactive Bayesian Agents

(MeLIBA). We leverage recent advances in agent modelling, approximate variational

inference, and Meta-Learning, to compute approximately Bayes-optimal agents for

multi-agent settings in a general and tractable way.

Specifically, our model consists of two parts that are jointly meta-trained on a

given prior distribution over other agents: (1) a belief inference network (with a

novel architecture), and (2) a policy that conditions on the approximate belief (as

before). There is a rich history of modelling agents in the literature (Hula et al.,

2015; Oliehoek et al., 2016; Albrecht et al., 2018, a.o.), and we build on ideas from

Rabinowitz et al. (2018) who use a hierarchical latent structure that separates
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permanent and temporal components of agent models. To maintain beliefs over

these, we use a VAE (Sec 2.1.3; Kingma et al., 2014) for sequential data (Chung et al.,

2015), combined with a hierarchical latent structure (Zhao et al., 2017). The policy

conditions on the latent variables of this VAE, allowing it to adapt to others online.

Empirically, we demonstrate that explicitly learning and conditioning on an ap-

proximate belief over other agents’ strategies can substantially improve performance

in multi-agent settings, compared to relying on samples, or using a model-free policy

with access to memory. Our results indicate that factoring our model according to

environment and the other agents’ structure is beneficial when learning to interact

with different agents, and that we can successfully learn adaptive policies.

7.1 Background

This section presents the problem setting, main assumptions, and IBRL framework.

7.1.1 Environment

We consider a Markov game (Shapley, 1953; Van Der Wal, 1981) with N agents,

defined as a tuple M = (N,S,U , R, T,H), where U = U1 × . . . ,× UN is the joint

action space, S the shared state space, R(rt+1|st, ut, st+1) a reward function where

r ∈ RN and ut = (u1, . . . , uN) are the rewards and joint actions, and T (st+1|st, ut)

are the state transition probabilities (for brevity this includes the initial state

distribution T0(s0)). At each timestep t in state st ∈ S, each agent i takes an

action u(i)
t ∈ U . The actions of all agents are executed simultaneously, and each

agent receives its own reward.

Each agent i chooses actions according to its policy a(i) : S×U×R×. . .×S → Ui

which maps interaction histories to action probabilities, a(i)(ut|τ (i)
:t ). Here we

allow an agent to condition its actions not only on the current state, but on the

history τ (i)
:t = (s0, u0, r

(i)
1 , . . . , st) with full observability of states and other agents’

actions, and its private reward.
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7.1.2 Objective

We consider the task of learning a policy a(1) for agent 1, with no control over the

other agents’ policies a(−1) = a(2), . . . , a(N). Instead, we have a prior distribution

over those policies PN−1
A (a(−1)) = ∏N

i=2 PA(a(i)). The objective of our agent is to

perform well in expectation when faced with a random sample of policies from

this distribution, within a single game:

max
a(1)

EPN−1
A

EPaR,PaT ,a
H+−1∑

t=0
r

(1)
t+1

 . (7.1)

Since the other agents’ policies are unknown to our agent, it has to simultaneously

learn about the other agents, while adapting its behaviour accordingly in order to

maximise its own online return within the given horizon H+.1

7.1.3 Interactive Bayesian RL

An agent that maximises Equation (7.1) acts optimally under uncertainty and is

called Bayes-optimal (see Section 2.2.1), assuming we treat the distribution PN−1
A

over other agents as our epistemic belief about the world. It gathers information

about the other agents if and only if this helps accumulate more rewards in

expectation in the future within the given horizon H+, and adapts its strategy

conditioned on its belief about the other agents.

In principle, a Bayes-optimal policy can be computed using the framework of

Interactive Bayesian Reinforcement Learning (IBRL, Chalkiadakis et al., 2003;

Hoang et al., 2013). Given a prior belief over the other agents’ strategies PN−1
A , the

objective in IBRL is to maximise the expected return under uncertainty, shown in

Equation (7.1). To this end, our agent maintains a belief about the other agents’

strategies, the posterior distribution p(a(−1)|τ:t), where τ:t = (s0, u0, r
(1)
1 , . . . , st)

is the agent’s experience until the current timestep t. This posterior is updated

deterministically at every timestep following Bayes’ rule.
1We do not make assumptions about the other agents’ rewards, but assume access to a reward

r(1) that leads to the desired behaviour if it acts self-interestedly. This applies to cooperative,
competitive, and mixed settings.
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The agent’s actions are now conditioned on hyper-states (Duff et al., 2002)

s+ = (st, bt): the environment states, together with the current belief. We slightly

abuse notation and write bt = b(τ:t) = p(a(−1)|τ:t) for the current belief, and

condition the policy on this belief, denoted

a(1)(ut|st, bt) or a(1)(ut|s+). (7.2)

We assume a parameterised posterior where the belief bt is fully characterised

by the distribution’s parameters.

The transition and reward function for hyper-states are

T (s+
t+1|s+

t , ut) = Ebt [T (st+1|st, ut)] δ(bt+1=p(a(−1)|τ:t+1)) (7.3)

where δ is the Dirac-delta function, and

R(rt+1|s+
t , ut, s

+
t+1) = Ebt [R(rt+1|st, ut, st+1)] . (7.4)

The policy that maximises the expected return in the resulting belief MDP (Kaelbling

et al., 1998) is the policy that optimally adapts to other agents given some prior

belief about their strategies. Unfortunately, computing this solution analytically is

intractable for all but the smallest tasks, and even existing approximation methods

are restricted to small environments.

Prior Beliefs over Other Agents We assume that the support of the prior

distribution PN−1
A is over agents of the general form a(i)(ut|τ (i)

:t ) described above.

These agents can be non-stationary in that they can adapt their behaviour depending

on the interaction history within a single game (which may consist of several rounds),

up until the horizon H+. For example, an agent might decide whether to cooperate

or not based on how often the other agents cooperated. Any general solution

therefore has to support these general types of other agents. In our approach,

we use the prior distribution PN−1
A for sampling the other agents’ policies i.i.d.

during meta-training (see Section 7.2).
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7.2 Meta-Learning Interactive Bayesian Agents

In this section we introduce Meta Learning Interactive Bayesian Agents (MeLIBA),

a method for meta-learning approximately Bayes-optimal agents that adapt to other

agents. To this end, we bring together the theoretical motivation from Interactive

Bayesian RL with modern methods from Meta-Learning, agent modelling, and

belief inference. In particular, we propose a hierarchical sequential VAE to model

beliefs over other agents, and jointly train this inference network with a policy that

conditions on environment states and approximate beliefs.

7.2.1 Modelling Other Agents

We model an agent by its own permanent latent variable (m, also called agent

character) and a temporal latent variable (mt, also called mental state):

a(i)(ut|τ:t) ≡ a(ut|st,m(i),m
(i)
t ). (7.5)

The character m does not change throughout the agent’s lifetime. The mental

state mt can change in response to new observations at every timestep and allows

us to model agents with non-stationary policies, i.e., policies conditioned on the

interaction history. For example, the mental state of an agent can represent counts

of how often other agents have cooperated, or capture the other agents’ belief over

other agents (and their beliefs, and so on).

This can be viewed as a probabilistic extension of an idea by Rabinowitz et al.

(2018), who propose this split to model other agents and coined the terms agent

character and mental state. Compared to Rabinowitz et al. (2018) who model

agents in a purely observational setting, we want to learn to interact with other

agents, and therefore need to maintain beliefs over the other agents. That is, we

want to infer the posterior p(m,mt|τ:t) given the agent’s experience τ:t up until the

current timestep, where m = (m(2), . . . ,m(N)) and mt = (m(2)
t , . . . ,m

(N)
t ).

This is different than our belief model in the previous chapter, where we

assumed one latent variable m that was fixed and described the unknown task. To

accommodate this, we use a hierarchical sequential VAE, described next.
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7.2.2 Approximate Belief Inference

Our agent’s objective is to maximise expected future return (Eq (7.1)), the expected

return given its current belief over the other agents’ policies. Our agent therefore

must predict other agents’ future behaviour. We use this fact as an inductive bias to

our model during meta-training, by learning to predict the future actions p(u(i)
t:H |st)

of each of the other agents i at every timestep t.

Optimising p(ut:H |st) is intractable. Instead, we can optimise an evidence

lower bound (ELBO):

log p(ut:H |st) ≥ Eq(m,mt|τ:t)
[
log gact

]
(7.6)

−KL(q(m,mt|τ:t)||q(m,mt|τ:t−1)) (7.7)

= ELBOt, (7.8)

where

gact = E
p(u(−i)

t:H−1,st+1:H |ut,st,m,mt)

 H−1∏
k=t+1

p(uk|sk,m,mk)
. (7.9)

Our model is a special type of VAE (Section 2.1.3; Kingma et al., 2014), and

combines a sequential VAE (Chung et al., 2015) with a hierarchical latent structure

(Zhao et al., 2017). We provide an intuitive explanation of this objective here,

and the full derivation is given in Appendix C.1.

Line (7.6) (RHS) / Eq (7.9): At timestep t, given the current posterior q(m,mt|τ:t),

we predict the other agents’ future actions p(uk|sk,m,mk) for all future timesteps

k = t+ 1, . . . , H. Since we assume independence between agents, this term factors

across the other agents. During meta-training, we have access to these future actions

from the collected rollouts. Future actions depend on the mental state m(i)
k for

each other agent i, which changes at each timestep k in the future. Therefore, the

model we maintain of the other agent includes a latent variable mk that evolves

over time, for which the encoder outputs only the current mental state, mt. We

model this using a recurrent architecture.
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Line (7.7): We use a hierarchical latent structure where the agent’s temporal

state mt can depend on its permanent type m. We use a single latent variable

model for this, i.e., we do not factor the posterior distribution. This follows insights

by Zhao et al. (2017) who show (for non-sequential VAEs) that learning hierarchical

features can be obtained by having a single latent variable model, but a hierarchical

structure in the network architecture. Intuitively, this means that we generate m

from early layers in the encoder and mt from deeper layers. Similarly, the decoder

has a reverse hierarchical structure (see Fig 7.1). Following the variBAD approach

from the previous chapter, we choose the prior (right-hand inside the KL) to be the

previous posterior, akin to a filtering-type Bayesian update. This incentivises the

posterior distribution to change slowly over time as the agent collects more data.

In practice, we represent the posterior using a diagonal Gaussian distribution

N (µt, σt), where µt = (µm,(2)
t , µ

mt,(2)
t , . . . , µ

m,(N)
t , µ

mt,(N)
t ) is the mean and where

σt = (σm,(2)
t , σ

mt,(2)
t , . . . , σ

m,(N)
t , σ

mt,(N)
t ) is the diagonal of the covariance matrix

(which is zero on the off-diagnoals). For the prior for the first timestep we set

q(m,mt) = N (0, I).

7.2.3 Meta-Learning Bayes-Adaptive Policies

Given the approximate posterior q(m,mt|τ:t), we want to learn an approximately

Bayes-optimal policy. To this end, we condition our policy not only on the

environment state, but also on this approximate belief over the other agents’

policies (see Equation (7.2)). This enables approximately Bayes-optimal behaviour:

the policy can take into account its uncertainty over the other agents’ policies

when choosing actions, and use it to trade off exploration and exploitation. In

practice, we approximate q using a Gaussian distribution N (µ, σ). The approximate

posterior is fully characterised by the mean µt and variance σt. The policy is then

trained using standard RL methods by conditioning on environment states st and

beliefs bt = (µt, σt), a(i)(ut|st, µt, σt).

We use deep neural networks to represent the individual model parts as follows.
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Figure 7.1: MeLIBA Network Architecture.

• An encoder bφ(τ:t) = (µ, σ) parameterised by φ, where the outputs fully

characterise the approximate posterior q(m,mt|τ:t) = N (m,mt|µ, σI). The

encoder has a hierarchical structure (see Fig 7.1). Each agent’s latent variables

(m,mt) are modelled using a diagonal Gaussian of size M + Mt, such that

µm,(i), σm,(i) ∈ RM and µmt,(i), σmt,(i) ∈ RMt .

• A recurrent action decoder to predict the other agents’ future actions,

a
(i)
ψ (ut|st,m(i),m

(i)
t ), parameterised by ψ. Since there are several other agents,

the encoder outputs N distribution parameters, µ = (µ(2), . . . , µ(N)) and

σ = (σ(2), . . . , σ(N)), which are independently fed into the same decoder to

compute the reconstruction loss.

• A policy a(1)
θ (ut|st, bt), parameterised by θ and dependent on φ through the

encoder (shorthand a(1)
θ,φ).

Fig 7.1 shows the network architecture (assuming one other agent), with the colours

above corresponding to the colours in the figure.

The overall objective of our agent is to maximise

L(φ, ψ, θ) = EPN−1
A

[
J (φ, θ) + λ

H−1∑
t=0

ELBOt(φ, ψ)
]
, (7.10)

where J (φ, θ) = E
PaR,P

a
T ,a

(1)
θ,φ

[∑T
t=0 rt

]
. Like before (Chapter 6), we train the policy

using PPO, and do not backpropagate the RL-loss through the encoder. For

experiment details and hyperparameters see Appendix C.
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7.3 Related Work

Adapting to unknown other agents is crucial for many applications where agents

can be deployed, and their limited ability to do so is a critical limiting factor for

real world applications. For example, in ad-hoc teamwork (Stone et al., 2010),

agents trained to coordinate with each other fail to do so when paired with unseen

partners (Carroll et al., 2019; Canaan et al., 2020a). We argue that a desirable

objective for adaptive agents is the expected online return, and therefore we should

aim to learn approximately Bayes-optimal behaviour.

To use the BAMDP framework from the previous chapter directly in a multi-

agent setting, we could simply model other agents as part of the environment

(Multiple Individual Learners; Tan, 1997) and maintain a belief over the reward

and transition function. However, ignoring the known structure in the environment

conflates several sources of stochasticity, making learning harder. By contrast,

in the IBRL formulation (see Sec 7.1.3), we explicitly model beliefs over the

other agents. In principle, this provides the right structure to solve the problem –

however, computing the solution is generally intractable and existing work provides

approximate solutions restricted to small environments or restrictive assumptions

(Chalkiadakis, 2007; Hoang et al., 2013; Chalkiadakis et al., 2010; Hoang, 2014).

Related to IBRL, a large body of literature on Bayesian RL for multi agent

settings and game theory uses beliefs over other agents, e.g., to compute best

responses, maximise value gain, or learn models for planning (a.o., Carmel et al.,

1990; Nachbar, 2005; Albrecht et al., 2016; Sadigh et al., 2016). What separates

MeLIBA from some of these approaches is that we optimise for Bayes-optimal

behaviour, and evaluate the online return (rather than episodic return).

A requirement for IBRL is the need to maintain a distribution over other agents,

and to do so explicitly we need to model them. We outline the most relevant agent

modelling literature here, and refer to Albrecht et al. (2018) and Hernandez-Leal

et al. (2017) for comprehensive surveys. A popular way of modelling other agents

is type-based modelling which assumes that the other agent has one of several

(pre-defined or learned) types (Albrecht et al., 2017; Barrett et al., 2013; Stone et al.,
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2010). In this work, we learn a latent variable model, in which the latent variables

can be seen as a continuous representation of agent types learned in an unsupervised

way. A central concept we use is separating behaviour shared by all other agents,

and agent-specific permanent and temporal features. This is based on ideas from

Rabinowitz et al. (2018), who refer to these as the agent’s character (which is

fixed throughout its life), and its mental state (which can change at any time

and includes beliefs over other agents). Rabinowitz et al. (2018) consider a purely

observational setting, whereas we are interested in learning Bayes-optimal behaviour

in an interactive setting. This requires maintaining beliefs over the other agents’

models, for which we combine hierarchical and sequential VAEs (Kingma et al.,

2014; Chung et al., 2015; Zhao et al., 2017) to meta-train a belief inference model.

Further, it requires training a policy that interacts with (and influences) other

agents, and uses these beliefs when making decisions to maximise online return.

Closely related to our approach is the work of Papoudakis et al. (2020), who

consider a similar problem setting to the one outlined in Sec 7.1. They focus on

partially observable settings, and approximating global from local (agent-specific)

information. To this end, they use a VAE to model other agents, and train an agent

to use the latent variable to adapt. In contrast to our setting, they assume the

other agents are Markov and only condition their actions on the current state – i.e.,

the other agents do not themselves adapt to the agents around them. Instead, we

allow full observability but focus on the question of how to model other agents that

are non-stationary. We show empirically that a different type of model is necessary

if such non-stationary policies are allowed. Most importantly, Papoudakis et al.

(2020) condition their policy on a sample from the approximate belief. However,

this means they cannot learn a Bayes-optimal policy, since the agent cannot take

into account its uncertainty about the other agents’ policies. Like Papoudakis et al.

(2020), many existing methods consider the other agents to be Markov, i.e., their

policy depends only on the current state (He et al., 2016a; Carroll et al., 2019;

He et al., 2016a). Our model in contrast can model agents that condition their

actions on a history, and adapt to non-Markov agents.
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Smith et al. (2020) propose Q-Mixing, which uses transfer learning to transfer

Q-values to new mixture of opponents, and an opponent classifier to refine the

mixing of Q-values to adapt to the new mix of opponents. In comparison, our

method does not rely on having a discrete (small) number of other agents, but can

also represent continuous distributions over other agents’ policies.

Several methods have also been developed for adaptive agents on specific domains

or making use of the structure of certain games, such as Avalon (Serrino et al., 2019),

Hanabi (Foerster et al., 2019; Hu et al., 2019; Canaan et al., 2020b), or Poker (Bard

et al., 2007; Southey et al., 2012). Our model on the other hand is general and can be

applied to cooperative and competitive settings, and mixed and general sum games.

7.4 Empirical Evaluation

In this section we study MeLIBA and our modelling choices empirically. We first

look at a small matrix game that allows us to analyse the hierarchical structure

that emerges in the latent space. We compare MeLIBA to existing approaches

for adaptive policies in complex multi-agent systems:

• RL2 (Duan et al., 2016; Wang et al., 2016), the model-free Meta-Learning

method introduced in Section 4.2. The architecture is similar to Figure 7.1

but with no decoder and no hierarchy in the encoder (no mt). Unlike in

MeLIBA, the RL loss is backpropagated through the encoder.

• LIOM (Papoudakis et al., 2020). The main differences to MeLIBA are that

the policy receives a sample from the approximate posterior, the encoder is

not hierarchical (no mt), and the decoder is not recurrent.

• An average policy that cannot adapt but learns a policy that is good on

average across all other agents.

MeLIBA and all baselines are based on PPO (for further implementation details see

Appendix C). We also study our architecture choices quantitatively and qualitatively

by ablating the hierarchical and the sequential structure.
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7.4.1 Game of Chicken

We first consider a simple matrix game, which allows us to verify that MeLIBA

works as expected, and analyse its learned latent structure.

Environment The Game of Chicken (Bergstrom et al., 1998) is a 2-player

competitive game (see Figure 7.2a). Imagine two cars driving towards each other:

if nobody swerves, they crash and get a penalty (−1); if they both swerve they get

a medium reward (1); and if only one of them swerves they are “the chicken” and

get a low reward (0) and the other player gets a high reward (8). We hand-code

three Tit-4-Tat agents, a strategy commonly used in game theory (Heap et al.,

2004) which swerve if the opponent swerved once / twice / three times in a row

(T4T-1/2/3). We randomly sample an agent to play with for 13 repetitions, which

is long enough that the optimal strategy requires inferring and remembering the

opponent’s strategy, and short enough to analyse game play. The Bayes-optimal

strategy is to swerve until the other agent also swerves and thereby reveals which

T4T strategy it is using, after which it can be exploited by swerving just until the

other agent will swerve, and then going straight to get a payoff of 8.

Latent Visualisation For MeLIBA we use a latent dimensionality of 1 each for

the permanent and temporal aspects, m ∈ R and mt ∈ R. Figure 7.2b shows the

latent variables when rolling out the meta-learned policy. The top is the mean

(solid) and standard deviation (shaded) of the latent variable m. The separation

between agent types happens after just 2 timesteps, which is how long it takes before

the other agent starts swerving (given that MeLIBA learned to always swerve at the

beginning). As expected, the standard deviation of the learned latent belief is high at

first, and declines as the agent gathers more information about the other agent. The

bottom of Figure 7.2b shows the same visualisation for the temporal latent variable,

mt. This shows that the model learned to count the number of swerves. Figure C.1

in Appendix C.2 shows that the latent variables of other architectures (no hierarchy,

or only permanent/temporal latents) do not give the same desired structure.
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Swerve Straight
Swerve (1, 1) (0, 8)
Straight (8, 0) (-1, -1)

(a) Payoff Matrix

(b) Latent variables during test rollout.

(c) Learning Curves

Figure 7.2: Results for the Game of Chicken. (a) The payoff matrix describing the
Game of Chicken. (b) The latent variables of MeLIBA during three separate rollouts at
test time, when playing against the different types of other agents T4T-1/2/3. Each colour
represents a different game against one of these agents. The top shows the permanent
latent variable m, which clearly separates the different agent types. The bottom the
temporal latent variablemt which keeps track of how often the agents have cooperated. (c)
The learning curves for MeLIBA and ablations/baselines. Both RL2 and MeLIBA learn
the Bayes-optimal behaviour quickly. Using only a permanent latent state (MeLIBA-m)
leads to a performance drop because the other agent is not modelled appropriately. LIOM,
which conditions the policy on samples of the latent variable, underperforms in this
environment, possibly because of the small latent dimension combined with the noise
introduced via sampling.
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Performance Comparison Figure 7.2c shows the performance of MeLIBA

compared to several baselines. RL2 (with a 128-dimensional hidden state where

MeLIBA has a 2D bottleneck) learns to solve the task quickly, which is unsurprising

given the simplicity of the game. LIOM however performs poorly on this task

(with similar architecture as MeLIBA). We believe this is because the latent space

is small, and small perturbations (caused by the sampling) make PPO unstable.

We found that backpropagating the RL loss through the encoder, or increasing

the latent dimension, helped to some extent (see Figure C.2 in Appendix C). But

even then, LIOM does not learn to solve the problem, which can be explained by

LIOM not having the appropriate agent model (i.e., decoder) for opponents that

adapt themselves. We test this hypothesis by testing MeLIBA with only the fixed

latent m and a feed-forward decoder (denoted MeLIBA-m). As Figure 7.2c shows,

MeLIBA-m cannot solve the task given the wrong model for the other agent.

7.4.2 Treasure Hunt

In this section we focus on whether predictive structure improves over model-

free approaches. A model-free approach, where the policy is a recurrent network

conditioned on its trajectory as in RL2, can in principle learn the Bayes-optimal

strategy (Ortega et al., 2019). However in practice we expect it to be difficult to

learn to both infer the other agents’ type, and use this information in the right way.

In most settings studied in the single-agent setting, there is a close mapping between

tasks and reward, for example if the agent gets rewarded when it reaches a goal, or

if the reward is a dense signal of which direction the agent has to walk, and that the

right inductive biases can help. In some multi-agent settings however, the mapping

from task (i.e., what the other agent’s strategies are) and the reward which the agent

observes in the environment is more complex, since the reward function depends on

the other agent’s actions, which in turn can depend on complex history-dependent

strategies. We therefore hypothesise that meta-learning to perform inference of the

other agent’s strategies is useful for maximising expected online return.
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MeLIBA MeLIBA-m LIOM RL2 Average
10.1 (0.1) 10.0 (0.2) 10.2 (0.05) 7.7 (0.3) 1.3 (0.9)

(a) Meta-Test Performance

(b) Environment (5x5) (c) Agent Type Prediction Accuracy

Figure 7.3: Treasure Hunt Game.

To this end, we use a gridworld version of the Treasure Hunt by Iqbal et al.

(2018), which we designed to be able to easily control the other agents’ strategy. It

is a collaborative game with two agents who have to collect coloured coins and bring

them to banks (see Fig 7.3b). Agents get a small bonus for collecting coins (0.1), a

large bonus for dropping them at the correctly coloured bank (1), and a penalty for

dropping them at the wrong bank (−1). Coins re-spawn at random locations after

being dropped at a bank. We hard-code 3 other agents: two that only collect coins

of one colour (unless the agent accidentally picks up a different-coloured coin, in

which case it brings the coin to the correct bank), and an agent which alternates

between colours. We use a 10 × 10 grid with horizon 100.

If no coin of the preferred colour is available, it does nothing and waits. To

maximise return it is therefore beneficial to identify which colour the other agent

prefers and focus on the other coins. I.e., the agent has to learn to infer the other

agent’s type, learn how this translates to what the other agent will do, and use

this information to adapt accordingly and focus on the coins of a different colour.

The results are shown in Table 7.3c (averages across 3 seeds and 95% confidence

intervals in brackets; learning curves are in Appendix C, Figure C.3).
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Comparison to Models with Permanent Latent Variables We first consider

the comparison between MeLIBA and the two models MeLIBA-m and LIOM, which

use a permanent latent variable only. The results show that there is no significant

difference between these methods. At first glance this seems surprising given that

one of the other agents switches between coin colours. However in this case, the

VAE loss is lowest if the latent variable represents the agent type and the last coin

collected, in which case the reconstruction term can be correct until the next coin is

collected (and wrong only for terms further into the future). So despite the model

mismatch, the information that is most relevant for the policy can still be captured

in the latent variable. This suggests that in practice, if we know upfront that the

other agent’s actions do not depend on the history, we can use the simpler model

MeLIBA-m. If this is not known, we do not lose out on performance if we use the

full MeLIBA model. LIOM performs as well as MeLIBA-m in this setting, which

indicates that sampling does not have any significant effect on performance.

Comparison to model-free methods RL2 learns to adapt to some extent and

performs better than the average policy; however, it is significantly outperformed

by MeLIBA. This failure of RL2 to learn the task compared to MeLIBA requires

us to take a closer look at what both models do, in order to understand where

this difference comes from. To this end, we train a logistic regression classifier

(see Appendix C.2) to predict the other agent’s type from the latent states of the

models: for MeLIBA that is m and mt, and for RL2 that is the hidden state of

the RNN. The results are shown in Figure 7.3c. For RL2, we see that the other

agent’s strategy is represented to some extent in the hidden state of the recurrent

model, and that the accuracy goes up as the policy gathers more data. Given that

RL2 fails to outperform the feed-forward policy however, it might not have learned

to use the information about the other agent’s strategy to adapt. In contrast, we

can accurately predict the other agent’s type from the latent variables in MeLIBA,

confirming that predicting future actions of the other agent is a useful auxiliary

task for learning to infer agent type in this environment.
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7.5 Discussion

Conclusion We introduced MeLIBA, a general method for meta-learning ap-

proximately Bayes-optimal policies for a given distribution of other agents that

can scale to complex multi-agent environments. We showed that MeLIBA’s model

of other agents learns a hierarchical latent representation of other agent types,

separating the permanent and temporal internal states. On several environments we

demonstrated that learning this latent representation by predicting future actions

of other agents, and conditioning the policy on it, allows an agent to adapt to

others. We conclude that maintaining explicit beliefs over other agents helps

compared to model-free approaches, especially when there is not a tight coupling

between other agent type and rewards.

Future Work In order to learn more informative priors, the prior distribution

could be learned from (human) expert data using imitation learning techniques (Song

et al., 2018), or by using existing multi-agent algorithms to pre-train the other agents

(Canaan et al., 2020b). Interesting settings include humans playing video games

together, where we might be interested in learning agents that can cooperate with

humans in an ad-hoc setting; or cars driving on the highway, to later train self-driving

cars in simulation to navigate in traffic before deploying them in the real world.

If such data is not available, another interesting direction for future work is to

train all agents simultaneously, with the goal of generalising well to new agents

that were not seen during training. This is a difficult problem, since sufficient

diversity has to be maintained and agents can overfit to the agents they have

been trained with (Carroll et al., 2019; Canaan et al., 2020a). In addition, this

introduces a different type of non-stationarity in the other agents which must be

addressed, since all agents now also evolve in-between episodes. In our current

setting we assume the other agents can adapt within a single episode, but are

reset at the beginning of each episode.

Even with this assumption, computing a Bayes-optimal policy is challenging. If

we additionally want to model other agents that learn over time (not just within
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a single episode), one way forward is to either assume their learning algorithm is

known and use the interactions with them to do inference on how their character

changes over time, or add a third level to our hierarchy (on top of the agents’

permanent type m and its temporal type mt that allows it to adapt within an

episode), e.g., ml, that models their latent learning algorithm. Our agent would

then have to reason about how its own actions and learning behaviour influences

the other agents’ learning behaviour across episode/game boundaries. This is an

incredibly challenging problem that is beyond the scope of this work.

In variBAD (Chapter 6), we modelled both the agent’s past and future envi-

ronment interactions (Sec 6.1.2). We found that this produces the best qualitative

belief representations, and performs best (on par with modelling only the future).

By contrast, in MeLIBA, we only model the future (Sec 7.2.2). We make this

compromise for MeLIBA because we have a more complex latent variable model

where one latent variable can change at every timestep (mt), which is more difficult

to model, and because we know from our variBAD experiments that modelling

only the future performs well (see Sec 6.4.2). Ideally, we want to model both the

past and future also in MeLIBA, which requires either having two decoders (one

RNN to decode the past, and one RNN to decode the future), or a different decoder

architecture. We leave this to future work.

Other interesting future directions are to, e.g., not require access of the other

agent’s observations at test time (Papoudakis et al., 2020), or include reward or

state uncertainty (Gmytrasiewicz et al., 2005; Ng et al., 2012; Oliehoek et al., 2014).

Next Steps In the next chapter, we unveil a general challenge in Meta-RL:

that of exploration during meta-training. We show how existing methods fail

due to bad meta-exploration when rewards are very sparse, and propose a way to

overcome this using novelty bonuses on hyper-states (the combination of environment

states and beliefs).
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In the previous chapters we saw that Meta-Learning can be used to learn policies

that adapt fast to new tasks. This “learning to learn” requires a feedback signal on

the meta-level about the agent’s learning performance, to quantify how well the

model performs after a learning episode. In Section 3.2 we introduced two objectives

for measuring learning performance in the Fast Adaptation setting. If, however,

this is difficult to measure – e.g., because the agent has not made sufficient learning

progress or does not receive a lot of signal due to reward sparsity – meta-learning

can fail. In this case, the agent faces an exploration challenge at the meta-level:

how to find a good meta-learning signal in the first place.
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Figure 8.1: Illustration of the meta-exploration problem. We return to the
example from our introduction to Meta-RL and learning to explore. As explained in
Section 3.2, the superior exploration strategy is to climb up the mountain, see the treasure,
and go there (s2), even though this incurs a large penalty in the short term for going up
the mountain. However, most existing Meta-Learning methods fail to find this solution
and learn strategy s1 instead, where the agent searches the grass for the treasure (Sec
8.4.1). The problem is that during meta-training, the agent does not sufficiently explore
the space of task-exploration strategies. Going up the mountain incurs a penalty, so that
the agent quickly avoids this without ever learning that this can lead to high returns
in the long term. To overcome this, we need meta-exploration across task-exploration
strategies.

8.1 The Meta-Exploration Problem

A weakness of existing Meta-RL methods is that they often rely on dense rewards

or sufficiently small state spaces, such that even with naive exploration during

meta-training the agent receives rewards that guide it towards good behaviour.

However, we observe empirically (Sec 8.4) that if the rewards are sparse or if

exploratory behaviour is penalised in the short term, existing methods can fail.

This is problematic, since many real world applications have sparse rewards (e.g.,

a fail/success criterion), and crafting dense rewards is difficult, time-consuming,

and prone to reward hacking (Abbeel et al., 2004; Hadfield-Menell et al., 2017).

Hence, to make Meta-Learning practical for such settings, we need methods that

can meta-learn even when rewards are sparse.

We distinguish between task-exploration and meta-exploration, as illustrated



8. Overcoming the Meta-Exploration Problem 117

in Figure 8.1. Task-exploration refers to the exploration behaviour we want

to meta-learn: when in a new environment, the agent must explore to learn the

task. We want this agent to be Bayes-optimal. Meta-exploration refers to the

challenge of exploring across tasks and adaptation behaviours during meta-training.

The agent has to (a) explore across individual tasks since the same state can have

different values across tasks, and (b) learn about the shared structure between

tasks to extract information about how to adapt, i.e., the agent must try out

different task-exploration strategies during meta-training to find the Bayes-optimal

one. Contrary to the Bayes-optimal task-exploration we want to meta-learn, we

do not care about the rewards incurred during meta-exploration, but rather about

efficiently gathering the data needed for Meta-Learning.

In this chapter, we propose Hyper-State Exploration (HyperX), a novel method

for meta-learning approximately Bayes-optimal exploration strategies when rewards

are sparse. HyperX combines variBAD (Chapter 6) with two exploration bonuses

for meta-training. The first is a novelty bonus on approximate hyper-states using

random network distillation (Osband et al., 2018; Burda et al., 2019b) that

encourages the agent to try out different task-exploration strategies, so that it

can better find an approximately Bayes-optimal one. As this requires accurate

task inference which we aim to meta-learn alongside the policy, the beliefs are

inaccurate early in training and this bonus is not useful by itself. We therefore use

a second exploration bonus to incentivise the agent to gather the data necessary to

learn approximate belief inference. This bonus is computed using the discrepancy

between the rewards and transitions that the belief model decoder predicts, and

the ground-truth rewards and transitions the agent observes. This exploration

bonus encourages the agent to visit states where the belief inference is incorrect

and more data should be collected.

We show empirically that in environments without dense and informative

rewards, current state of the art methods either fail to learn, or learn sub-optimal

adaptation behaviour. In contrast, we show that HyperX can successfully meta-learn

approximately Bayes-optimal strategies on these tasks.
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8.2 Exploration in Approximate Hyper-State Space

Meta-learning good task-adaptation behaviour requires the agent to, during meta-

training, gather the data necessary to learn good task-exploration strategies. If the

environment rewards are sparse, they might however not provide enough signal for

an agent to learn something if it follows naive exploration during meta-training.

The agent needs to explore the state space sufficiently during meta-training, which

is complicated by the fact that the same state can have different values across tasks.

A good meta-exploration strategy also ensures that the agent tries out diverse task-

exploration strategies which allow it to find an approximately Bayes-optimal one.

To address the meta-exploration problem, we propose HyperX (Hyper-State

Exploration), a method to meta-learn approximately Bayes-optimal behaviour even

when rewards are not dense. The two key ideas behind HyperX are:

1. We can incentivise the agent to try different task-exploration strategies during

meta-training by rewarding novel hyper-states. By exploring the joint space

of beliefs and states (i.e., hyper-states), the agent simultaneously (a) explores

the state space, while distinguishing between visitation counts in different

tasks due to changing beliefs, and (b) tries out different task-exploration

strategies because these lead to different beliefs (even in the same state). We

call this exploration bonus rhyper(s+).

2. For the novelty bonus on hyper-states to be meaningful, the beliefs needs

to be meaningful. However since the inference procedure is meta-learned

alongside the policy, they do not capture task information early in training.

We therefore additionally incentivise the agent to explore states where beliefs

are inaccurate, by using the VAE reconstruction error (of the current rewards

and transitions given the current belief) as a reward bonus, rerror(st, rt). Since

the belief is conditioned on the history including the most recent reward rt
and state st, and the VAE is trained to predict rewards and states given

beliefs, this bonus tends to zero over training.

In the following, we describe how to compute these bonuses.
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Hyper-State Exploration To compute exploration bonuses on the hyper-states,

we use random network distillation (see Appendix D.1) given its empirical successes

in standard RL problems (Osband et al., 2017, 2018; Burda et al., 2019b) and

theoretical justifications for deep networks (Pearce et al., 2020; Ciosek et al., 2020).

To compute a reward bonus, a predictor network f(s+) is trained to predict the

outputs of a fixed, randomly initialised prior network g(s+), on all hyper-states

s+ visited by the agent so far in meta-training. The mismatch between those

predictions is low for frequently visited hyper-states and high for novel hyper-states.

Formally we define the reward bonus for a hyper-state s+
t = (st, bt) as

rhyper(s+
t ) = ||f(s+

t )− g(s+
t )||2. (8.1)

We train the predictor network fω alongside the policy and VAE.

Approximate Hyper-State Exploration To compute the hyper-state bonus

above, we need an belief representation. This is provided by variBAD in the VAE

latent. However at the beginning of meta-training, the beliefs do not sufficiently

capture task information. If the policy does not explore and always gets a sparse

reward which is uninformative w.r.t. the task, we fail to meta-learn to perform

belief inference. The policy should therefore seek states where the VAE is not yet

trained well. As a proxy for this, we use the VAE reconstruction error for the

reward and states at the current timestep as a reward bonus:

rerror(rt, st)=−Eqφ(m|τ:t)

[
log pψ(rt|st−1, at−1, st,m)+ log pψ(st|st−1, at−1,m)

]
. (8.2)

Since rt and st were observed in τ:t, the encoder q can in principle encode all

necessary information for the decoder p to predict the current reward and state

transition exactly. Early in training, these predictions are inaccurate in states where

the rewards/transitions differ a lot across tasks. Therefore this exploration bonus

incentivises the agent to visit states that provide crucial training data for the VAE.

In practice, this reward bonus is computed using one Monte Carlo sample from q.

If only one aspect (reward or transitions) change across tasks, variBAD only learns

the respective decoder, and so we only use the respective reward bonus.
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Algorithm 3 HyperX Pseudo-Code
Input: Distribution over MDPs p(M)
Initialise: Encoder qφ, decoder pψ, policy πθ, RND predictor network fω, buffer
B = {s0, b0}
for k = 1, . . . , K do
Sample environments M = {Mi}Bi=1 where Mi ∼ p
for Mi ∈M do
Reset s0, h0, b0
for t = 0, . . . , T − 1 do
Choose action: at = πθ(st, bt)
Step environment: st+1, rt+1 = Mi.step(at)
Update belief: bt+1 = qφ(st+1, at, rt+1, ht)
Compute exploration bonuses:

rhyper(s+
t+1) using Eq (8.1)

rerror(rt+1, st+1) using Eq (8.2)
Add data to buffer:
Bp.add(st+1, bt+1, at, rt+1, r

hyper
t+1 , rerrort+1 )

end for
end for
Update VAE, policy, and RND predictor network:

(φ, ψ)← (φ, ψ) + α(φ,ψ) ∇(φ,ψ)
∑H+
t=0 ELBOt(φ, ψ)

θ ← θ + αθ ∇θĴ (θ) using Eq (8.3)
ω ← ω − αω ∇ωEs+∼B [ ||fω(s+)− g(s+)||22 ]

end for

Meta-Training Objective Putting these bonuses together, the new objective

for the agent is

Ĵ +(θ) = Eb0,T+,πθ

[H+−1∑
t=0

γtR+(rt+1|s+
t , at, s

+
t+1)

+ λhr
hyper(s+

t+1) + λer
error(rt+1, st+1)

]
. (8.3)

While in principle these bonuses tend towards zero during meta-training, we anneal

their weights (λh, λe) over time. This prevents the policy to keep meta-exploring

at meta-test time and ensure that it maximises only the expected online return.

Algorithm 3 shows pseudo-code for HyperX. Implementation details are given in Ap-

pendix D.3. Source code is available at https://github.com/lmzintgraf/hyperx.

https://github.com/lmzintgraf/hyperx
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8.3 Related Work

Exploration Bonuses Deep RL has been successful on many tasks, and naive

exploration via sampling from a stochastic policy is often sufficient if rewards are

dense. For hard exploration tasks this performs poorly, and a variety of more

sophisticated exploration methods have been proposed. Many of these reward novel

states, often using count-based approaches to measure novelty (Strehl et al., 2008;

Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017). A prominent method

is Random Network Distillation (RND) for state-space exploration in RL (Osband

et al., 2017, 2018; Burda et al., 2019b; Ciosek et al., 2020). We use it for hyper-states

in this paper. We further use an exploration bonus based on the VAE reconstruction

error of rewards and transitions. Prediction errors of environment dynamics are

used to explore the MDP state space, by, e.g., Achiam et al. (2016), Burda et al.

(2019a), Pathak et al. (2017), Schmidhuber (1991), and Stadie et al. (2015).

Meta-Exploration To the best of our knowledge, all existing Meta-Learning

methods for Online Adaptation rely on myopic exploration during meta-training.

As we observe empirically (Sec 8.4), this can cause them to break down if rewards

are too sparse. Two recent works also study the problem of exploration during

meta-training, albeit for Few-Shot Adaptation. Still, similar considerations about

meta-exploration apply. Zhang et al. (2021) propose MetaCURE, which meta-learns

a separate exploration policy that is intrinsically motivated by an exploration

bonus that rewards information gain. Liu et al. (2020) propose DREAM, where a

separate exploration policy is trained to collect data from which a task embedding

(pre-trained via supervision with privileged information) can be recovered. These

methods can, in principle, still suffer from poor meta-exploration if rewards are so

sparse that there is no signal to begin with, and information gain / task embedding

recovery cannot be measured. We empirically compare to MetaCURE and find

that this is indeed true (Sec 8.4.3).

If available, privileged information can be used during meta-training to guide

exploration, such as expert trajectories (Dorfman et al., 2021), dense rewards for
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meta-training but not testing (Rakelly et al., 2019), or ground-truth task IDs /

descriptions (Liu et al., 2020; Kamienny et al., 2020). HyperX works well even

if such information is not available.

Exploration in POMDPs Meta-exploration is related to exploration when

learning in partially observable MDPs (POMDPs, Cassandra et al. (1994)), of which

BAMDPs are a special case. This topic is mostly studied on small environments.

Similar to our work, Cai et al. (2009) incentivise exploration in under-explored

regions of belief space. However, they use two separate policies for exploration

and exploitation and rely on Bayesian learning to update them, restricting this to

small discrete state spaces. Several authors (Poupart et al., 2008; Ross et al., 2008;

Doshi et al., 2008; Ross et al., 2011) explore model-based Bayesian reinforcement

learning in partially observable domains. By relying on approximate value iteration

to solve the planning problem, they are also restricted to small environments. To

our knowledge, only Yordanov (2019) provides some initial results on a simple

environment using Random Network Distillation. They propose various ways to

deal with the non-stationarity of the latent embedding such as using a random

recurrent network that aggregates past trajectories.

8.4 Empirical Evaluation

In this chapter, we present four experiments that illustrate how and why HyperX

helps agents meta-learn good online adaptation strategies (Sec 8.4.1-8.4.3), and re-

sults on sparse MuJoCo Ant-Goal to demonstrate that HyperX scales well (Sec 8.4.4).

We also evaluated HyperX on standard Meta-RL benchmarks; the 2D navigation

Pointrobot, Meta-World ML1 with sparse rewards, or the otherwise challenging

dense AntGoal environment. However, we found that existing methods already

perform well and there is no room for improvement via better exploration. We

therefore refer these results to Appendix D.2.
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(a) (b) (c)

Figure 8.2: Treasure mountain results. Top: Learning curves for HyperX and
variBAD (10 seeds, 95% confidence intervals shaded). Bottom: Behaviour of the HyperX
agent at different stages of training. HyperX learns the superior task-exploration strategy
of climbing the mountain to see the treasure, and going there directly after. VariBAD
learns the inferior strategy of walking around the circle until finding the treasure (see
rollouts in Appendix D.2).

8.4.1 Treasure Mountain

We consider our earlier example (Fig 8.1), where the agent’s task is to find a

treasure hidden in tall grass. There are two good task-exploration strategies: (s1)

search the grass until the treasure is found, or (s2) climb the mountain, spot the

treasure, and go there directly. The latter strategy has higher expected return,

but is harder to meta-learn since (a) climbing the mountain is discouraged by

negative rewards and (b) the agent must meta-learn to interpret and remember

the treasure location it sees from the mountain.
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We implement this as follows (details in Appendix D.3): the treasure can be

anywhere along a circle. The agent gets a sparse reward when it reaches the treasure,

and a time penalty otherwise. Within the circle is the mountain, represented by a

smaller circle. Walking on it incurs a higher time penalty. The agent’s observation

is 4D: its x-y position, and the treasure’s x-y coordinates, which are only visible

from the mountain top. The agent starts at the bottom of the circle and has

one rollout of 100 steps to find the treasure.

Figure 8.2 shows the learning curves of variBAD (which uses no exploration

bonuses for meta-training) and HyperX, with HyperX performing significantly

better. Figures 8.2a-8.2c show the behaviour of HyperX at different times during

training. At the beginning (8.2a), it explores along the circle (but does not stop

at the treasure and explores further) and its performance increases. Then, it

discovers the mountain top: because the VAE reconstruction error rerror is high

there, it initially just stays there (8.2b). Performance drops since the penalty

for climbing the mountain is slightly higher than the time penalty the agent gets

otherwise. Finally, at the end of training (8.2c) it learns the optimal strategy s2

(consistently across all 10 seeds). Inspection of the rollouts show that variBAD and

other methods for online adaptation (RL2 (Duan et al., 2016; Wang et al., 2016)

and Belief Learning (Humplik et al., 2019)) always only meta-learn the inferior

task-exploration strategy s1 (see Appendix D.2).

When using only rhyper, the agent only learns the inferior strategy s1: early in

training, hyper-states are meaningless and the agent stops exploring the mountain

top. When using only rerror, the agent learns the superior strategy s2 around 70%

of the time. For learning curves see Appendix D.2.

This experiment shows that HyperX tries out different task-exploration strategies

during meta-training, and can therefore meta-learn a superior exploration strategy

even when it is expensive in the short term, but pays off in the longer run.
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Figure 8.3: Multi-stage Gridworld. Goal 1 (×) unlocks goal 2 (∗), which unlocks
goal 3 (•). Example behaviour of HyperX in blue.

Figure 8.4: Multi-stage Gridworld learning curves. (3 seeds)

8.4.2 Multi-Stage Gridworld

Next, we consider a partially observable multi-stage Gridworld which illustrates

how, without the appropriate exploration bonuses on hyper-states, existing methods

can converge prematurely to a local optimum.

The Gridworld is illustrated in Figure 8.3: three rooms are connected by narrow

corridors, and three (initially unknown) goals (G1-G3) are placed in corners of

rooms: The goals provide increasing rewards, i.e. r1 = 1, r2 = 10 and r3 = 100,

but are only sequentially unlocked; G2 (r2) is only available after G1 has been
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reached; G3 (r3) is only available after G2 has been reached. The environment

is partially observable (Poupart et al., 2008; Cai et al., 2009) as the agent only

observes its position in the environment and not which goals are unlocked. If the

agent is not on an (available) goal it gets r = −0.1. G1 and G3 are always in

the middle room, G2 always in an outer room on the same side as G1. The agent

starts in the center of the middle room and has H = 50 steps. The best strategy

is to search the first room for G1, then search the appropriate room for G2, and

then return to the middle room to find G3.

Figure 8.4 compares variBAD, variBAD with state-novelty bonus, and HyperX.

VariBAD learns to reach G1 and remains there, effectively receiving only r1 at

every timestep. VariBAD+r(s) learns to find G2 and stay there, but fails to find

G3. Only HyperX solves the problem (see behaviour in Figure 8.3). Methods

which use a purely state-based exploration bonus such as variBAD+r(s) are unable

to find G3 in the middle room as those states s (not hyper-states (s, h)) appear

already sufficiently explored. In contrast, a novelty bonus on the hyper-state

r(s, h) like in HyperX leads to a high novelty bonus in the middle room once

G2 is found because the belief changes.

These results show that without the right exploration bonuses during meta-

training, the agent can prematurely converge to a suboptimal solution. Additionally,

we see that that HyperX can handle this degree of partial observability.

8.4.3 Sparse HalfCheetahDir

To demonstrate the effect of the different exploration bonuses, we consider the

following example for which we can compute exact beliefs. The environment is

based on the HalfCheetahDir MuJoCo environment, which we studied in Chapters

5 and 6, and which is commonly used in meta-RL (e.g., Finn et al., 2017a; Rakelly

et al., 2019). In the dense version the agent is rewarded according to its (1D)

velocity in the correct direction, and existing Meta-RL methods can learn good

solutions (see Figure 6.5). We now consider a sparse version without resets: the

agent only receives the dense reward once it walks sufficiently far away from its
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starting position, outside an interval [−5, 5] (and a control penalty otherwise), and

has 200 environment steps to adapt. This makes it much more difficult to find the

optimal adaptation strategy, which is to walk far enough in one direction to infer

the task, and turn around in case the direction was wrong.

Without dense rewards, existing Meta-Learning algorithms fail to learn this

strategy, as is the case for RL2 (Duan et al., 2016; Wang et al., 2016), PEARL

(Rakelly et al., 2019), ProMP (Rothfuss et al., 2019), E-MAML1 (Stadie et al.,

2018) and variBAD, as shown in Table 8.1a. HyperX in contrast successfully

meta-learns the correct task-adaptation strategy. For all baselines, we used the

available open source code.

Exploration in Exact Hyper-State Space To investigate how the exploration

bonuses in HyperX help solve this task, we first assume that we have access

to the true hyper-state s+
t =(st, bt), including the true belief which we define as

follows. The prior belief is b0=[0.5, 0.5] and it can be updated to the posterior

belief b=[1, 0] (left) or b=[0, 1] (right) once the agent observes a single reward

outside of the interval [−5, 5]. Since we can manually compute this belief, we

can train a Belief Oracle using standard reinforcement learning, by conditioning

the policy on the exact hyper-state. Table 8.1b shows the performance of the

Belief Oracle, with and without reward bonuses. Without the bonus, even this

Belief Oracle does not learn the correct behaviour for this seemingly simple task.

When adding the exploration bonus rhyper(b, s) on the hyper-state, the policy learns

approximately Bayes-optimal behaviour.

Figure 8.5 shows how the bonuses incentivise the agent to explore, with the

red gradient in the background visualising the reward bonus (darker meaning more

bonus). When the agent walks outside the sparse-reward interval and updates its

belief, the reward bonus in the opposite direction becomes high since it has not yet

visited that area with the updated belief very often. Table 8.1 (top) shows that a

policy trained with a reward bonus only on the state, r(s), performs worse. The
1E-MAML/ProMP/PEARL are not designed to adapt within a single episode, so we do the

gradient update (E-MAML/ProMP) / posterior sampling (PEARL) after half an episode.
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reason is that the agent is not incentivised to explore states to the far right after

its belief has changed. Inspection of the learned policies shows that agents trained

with a state exploration bonus do go outside the interval, and just return to and

stay in the sparse-reward zone if the direction was wrong (see Appendix D.2).

Method Avg Return
VariBAD −1.1
E-MAML −0.4
ProMP −0.4
Humplik et al. −0.1
RL2 −0.7
PEARL −0.1
HyperX 819.6

(a) Method Comparison

Method Avg Return
Belief Oracle −3.0
Belief Oracle + r(b) −3.6
Belief Oracle + r(s) 639
Belief Oracle + rhyper 824

(b) Ground Truth Beliefs + Exploration Bonuses

Method Avg Return
HyperX , rerror only −0.7
HyperX , rhyper only 462
RL2 + rstate 463
RL2 + rhyper 477
Humplik et al. + rhyper 840
Humplik et al. + rhyper + rerror 850
VariBAD + rmetaCURE -0.3
VariBAD + rmetaCURE + rstate 548
VariBAD + rmetaCURE + rhyper 811

(c) Ablation Studies.

Table 8.1: HalfCheetahDir meta-test performance. (a) HyperX successfully solves
this task, while existing Meta-Learning methods fail. (b) Not even an agent with access
to the correct belief is able to solve this task without appropriate exploration bonus. (c)
Both exploration bonuses are necessary to succeed, but different realisations with similar
effects (e.g., metaCURE) work as well. The bonuses can be used with other methods,
if they provide an approximate belief (for rhyper) and a way of measuring how good the
inference is (for rerror).
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Figure 8.5: HalfCheetahDir example rollouts for the Belief Oracle, early in meta-
training (1e6 frames), trained with the hyper-state-bonus rhyper(s+). The y-axis denotes
time in agent steps. The background visualises the hyper-state-bonus: darker means
higher bonus. Top: At the beginning of the episode, the agent’s belief is the prior, and
the exploration bonus incentivises it to explore away from the familiar start position.
Bottom: Once the agent enters the dense-reward zone, it infers the task and updates its
belief. Now, the states on the right side seem novel since the agent has not seen them
together with the posterior belief.

HyperX: Exploration in Approximate Hyper-State Space Above we as-

sumed access to the true belief bt. When meta-learning how to perform approximate

belief inference alongside the policy however, these beliefs change over time and

are initially inaccurate. As Table 8.1c (top) shows, using only the hyper-state

exploration bonus rhyper, which worked well for the Belief Oracle, performs sub-

optimally. This is because early in training the belief inference is inaccurate, and

the hyper-state bonus is meaningless: the agent prematurely and wrongly assumes

it has sufficiently explored. Only when adding the error reward bonus rerror as well
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to incentivise the agent to explore areas where the belief inference makes mistakes,

can we meta-learn approximately Bayes-optimal behaviour for this task. Using

only the error reward bonus rerror performs poorly as well.

Other Meta-Learners While we build HyperX on variBAD, the same exploration

bonuses can be used for other Meta-Learning methods that provide (a) a belief

representation, and (b) a measure of how good the belief inference is. One such

method is the work by Humplik et al. (2019) who train a belief model using the

ground-truth task description. This makes meta-learning inference easier, and the

exploration bonus rerror may not be necessary: for sparse HalfCheetahDir, using

only the hyper-state bonus (rhyper) is sufficient, as shown in Table 8.1c (middle).

This result is not directly comparable to HyperX since it uses privileged information,

whereas HyperX meta-learns inference in an unsupervised way. For the method

RL2, the RNN hidden state can be used as a belief proxy to compute the hyper-

state bonus. The second exploration bonus (rerror) however, cannot be estimated

because the hidden state is only used implicitly by the agent. As Table 8.1c shows,

an exploration bonus on the state (rstate) or on the hyper-state (rhyper) for RL2

is not sufficient to solve the task.

Comparison to MetaCURE Recently Zhang et al. (2021) proposed MetaCURE

for meta-exploration. They use information gain as an intrinsic reward, defined as

the difference between the prediction errors (of states/rewards) given the agent’s

current experience or given the ground-truth task. For the sparse HalfCheetahDir

task this is high when the agent first steps over the interval bound. Even though

MetaCure is defined for episodic task-adaptation, we can use its bonus in the

online adaptation setting as well. Compared to HyperX it requires training two

additional prediction networks, and it relies on privileged task information during

meta-training to do so. Table 8.1c shows that this exploration bonus alone is not

sufficient to solve the task – it only incentivises the agent to go to the interval

boundary. Adding a hyper-state bonus is required to solve the task.
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(a) Success Rates

(b) HyperX Rollout

Figure 8.6: Sparse AntGoal results. 8.6a shows the success rate per episode (10
seeds, standard error shaded). 8.6b shows a cherry-picked test rollout of the HyperX
agent during the first episode.

8.4.4 Sparse MuJoCo AntGoal

To show that HyperX can scale to more complex environments, we evaluate it on a

harder MuJoCo task, a sparse version of the Ant-Goal-2D (Rothfuss et al., 2019;

Rakelly et al., 2019) that we also used in Chapter 6. In the dense version, the agent

gets a reward relative to its distance to the goal. We make this task significantly

harder by sparsifying the rewards, giving the agent the dense reward only if it is

within a certain distance of the goal (the blue shaded area in Figure 8.6b). The best

exploration strategy is therefore to spiral outwards until a reward signal is found.

Figure 8.6a shows the success rates of HyperX, variBAD, RL2 and PEARL

across different episodes, where an agent is successful if it enters the goal circle.

Both RL2 and PEARL only learn to go to goals close to the starting position, and

therefore have low success rate. HyperX and variBAD learn to sometimes solve

the task, with HyperX having a slightly higher success rate. This result illustrates

that a lack of good exploration can crucially affect final performance: the success

rate in the 6th episode is good iff early exploration was good. Plots for the returns

across episodes and learning curves can be found in Appendix D.2.
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Figures D.5 and D.6 (Appendix D.2) show example behaviours of the meta-

trained HyperX and variBAD agent. HyperX learns to efficiently search the space

of possible goals, occasionally in the shape of a spiral (Fig 8.6b), finding the goal in

the first episode. VariBAD can also learn to search in a spiral but is less efficient

and more likely to fail. Once the agent reaches dense-reward radius around the goal,

it is able to determine where the goal is and heads there directly. In subsequent

episodes, the agent returns directly to the goal.

Overall our empirical results show that HyperX can meta-learn excellent adap-

tation behaviour on challenging sparse reward tasks where existing methods fail.

We also evaluated HyperX on sparse environments used in the literature, like sparse

PointRobot (Rakelly et al., 2019), and sparse Meta-World ML1 (Yu et al., 2019) but

refer to these in Appendix D.2 since variBAD can already solve these (Chapter 6).

8.5 Conclusion

This chapter showed that existing Meta-Learning methods can fail if the environment

rewards are not densely informative with respect to the task, and myopic exploration

during meta-training is insufficient. We highlighted that in this case, special

attention needs to be paid to meta-exploration. This applies to many different

problem settings, but we focused on online adaptation where the agent aims to

maximise expected online return. Here, task-exploration is particularly challenging

since the agent has to trade off exploration and exploitation.

We proposed HyperX, which uses two exploration bonuses to incentivise the

agent to explore in approximate hyper-state space during meta-training. This way,

it collects the data necessary to learn approximate belief inference (incentivised by

rerror), and tries out different task-exploration strategies during meta-training (incen-

tivised by rhyper). We demonstrated empirically how Meta-Learning without explicit

meta-exploration can fail and why, and showed that HyperX can solve these tasks.



Part III

Discussion

133





9
Open Research Areas

Contents
9.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.2 Dealing with Task Distribution Shifts . . . . . . . . . . 137
9.3 Building Better Belief Models . . . . . . . . . . . . . . . 139

In this thesis, we addressed big challenges around how to develop agents that can

adapt quickly and efficiently in complex environments, and offered scalable solutions

for single agent, multi-agent, and sparse reward settings. We took a context-based

approach (introduced in Chapter 5), and paired it with Bayesian reasoning, to

develop agents that can autonomously adapt to novel environments or other agents,

all the while efficiently trading off exploration and exploitation (Chapters 6-8).

We believe that there exist at least three major open problems that will

become more relevant as the field advances: constructing better benchmarks and

an understanding of testbed requirements, dealing with task distribution shifts

between training and testing, and building better belief models. The latter two

can be a direct continuation of the work presented in this thesis. We discuss all

three challenges in the following sections.
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9.1 Benchmarks

In our experiments, we relied on (at the time) existing Meta-RL benchmarks and toy

tasks to evaluate our methods. On some of these, we observe a ceiling effect (e.g., for

some MuJoCo tasks in Section 6.3.3). This is problematic because it stalls research,

and makes comparison between approaches difficult. Moving forward, we need more

challenging benchmarks or modifications to existing ones (like sparsifying rewards

as in Chapter 8), to push further the capabilities of fast-adapting agents. While

doing so, it may be useful to understand and focus on specific sub-challenges within

Meta-RL. Several benchmarks that do so have recently emerged. The Meta-World

benchmarks ML-10 and ML-45 (Yu et al., 2019) have a separate training and test

set, requiring the agent to generalise more at test time (see next section). The

Alchemy benchmark (Wang et al., 2021) requires an agent to learn about underlying

structure and do hypothesis testing together with online inference. The NetHack

learning environment (Küttler et al., 2020) challenges agents to condition on natural

language, and tests for generalisation since the levels are procedurally generated.

Applying the methods we presented in this thesis to these new benchmarks is

an exciting way to see how well they scale, identify concrete challenges that lie

ahead, and work towards addressing them.

Requirements of Training Task Distributions Apart from the need for new

benchmarks, we believe that it is also necessary to develop a better understanding

of the requirements for meta-training distributions in the first place. E.g., how

many tasks are necessary to learn good performance, and how does this relate to the

properties of the method? How can we detect whether meta-training is working, and

transfer across tasks is successful? Answering some of these questions may require

measuring task similarity (Carroll et al., 2005), which can be useful to sample tasks

for meta-training, or to determine if a test task is close to what was seen during

training. Other exciting research directions are to combine unsupervised environment

generation (Jiang et al., 2021) with Meta-Learning, or to develop benchmarks that

have procedurally generated tasks (Cobbe et al., 2019; Küttler et al., 2020).
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9.2 Dealing with Task Distribution Shifts

Throughout the thesis, we assumed that the tasks for meta-training and testing

come from the same distribution. However, when deploying agents in the real

world, there will likely be a shift in the distribution, e.g., because we meta-train

in a simulator that is not perfect.

Example To illustrate how challenging it can be to deal with distribution shifts,

we perform the following experiment. In a 2D environment, an agent has to navigate

to a goal position that is somewhere on a circle around its starting position. We

consider four different meta-training distributions shown in Figure 9.1, where the

goals all lie either on the left, top, right, or bottom, of the circle. The meta-test

distribution only includes tasks where the goal lies on the right side. Figure 9.2

shows how long it takes for variBAD models to adapt at test time (using gradient

descent), after meta-learning on the different training task distributions. We see

that it takes the pre-trained models long to recover; much longer than training

from scratch (Fig 9.2a). It is even worse in the sparse reward setting: some agents

do not recover at all (Fig 9.2b).

These results are not specific to variBAD, but are expected to apply to most

current approaches for Fast Adaptation (see results for RL2 and MAML in Xiong et al.

(2021)). They illustrate the immense challenge of dealing with distribution shifts,

and the need for methods that can detect such a shift, and address it appropriately.

Solutions Not much research has been done on explicitly dealing with distribution

shifts in the Meta-Learning for Fast Adaptation setting, but some promising initial

successes have been achieved on Gridworld and MuJoCo tasks with disjoint training

and test distributions (Lee et al., 2021; Mendonca et al., 2020; Fakoor et al., 2020).

These methods mostly rely on generating data that is different from the training

tasks distribution, either during meta-training to train an agent that can generalise

to more tasks than it has seen (Lee et al., 2021), or at meta-test time to improve

sample complexity (Mendonca et al., 2020; Fakoor et al., 2020).
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(a) Different Training Distributions (b) Test Distribution

Figure 9.1: Experimental set-up for dealing with shifts between training and
task distributions. We use 4 different meta-training distributions (a) and one meta-test
distribution (b). Training and testing on pright is the set-up we used throughout the thesis.
Training on pleft / pup / pdown and testing on pright requires the agent to generalise or
adapt to tasks that are very different from what it has seen during meta-training.

(a) Dense Rewards (b) Sparse Rewards

Figure 9.2: Illustration of adaptation performance when the meta training and
test distributions differ, ptrain 6= ptest. We trained four variBAD agents separately
on four different task distributions: goals on the left/top/right/bottom from the agent’s
starting position, ptrain ∈ {pleft, pup, pright, pdown} as shown in Figure 9.2 (three seeds
each). At meta-test time, we adapt them on test tasks that lie only on the right,
ptest = pright. The variBAD agent where ptrain = ptest = pright can adapt within a single
episode (dashed line at top). The other agents however need more time to adapt. To this
end, we adapt them on single test-tasks using gradient descent on the entire model (policy
and encoder). Surprisingly, pre-training an agent on a slightly different distribution gives
us a disadvantage compared to training from scratch: it takes them longer to learn the
test task (Fig 9.1a). When rewards are sparse, it is even worse: some agents do not
recover at all (Fig 9.1b), most likely due to a lack of reward signals since the right side is
never explored. These results were published in Xiong et al. (2021).
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For next steps, one possible research goal is to meta-train agents that can generalise

well, so that at test time we can simply do the standard inner loop update (e.g.,

doing a few gradient steps in CAVIA or unrolling the encoder and policy in variBAD).

One way to achieve this is with innovations in the parameterisation of the policy

or learning algorithm. Out-of-domain generalisation has been successful in the

Long Horizon Meta-Learning literature (where the agent is trained from scratch

for hundreds or more episodes) by introducing architecture symmetries (Kirsch

et al., 2022) or learning part of an update rule (Oh et al., 2020). In the Fast

Adaptation case some initial promising results on tasks that are outside the meta-

training distribution were obtained when using hypernetworks to generate policies

at meta-test time (Sarafian et al., 2021). Another way to meta-train agents that can

generalise better is to train them on many more environments (such as procedurally

generated ones like Cobbe et al. (2019) and Küttler et al. (2020)).

Alternatively, we can focus our efforts on developing ways to continue learning

(beyond what the inner-loop dictates) at meta-test time. To do so, the agent must

decide when, and for how long, to continue learning on the new task. Doing this

without human input means that the agent should detect whether a distribution

shift has occurred, and somehow quantify its uncertainty about the new tasks. This

could be done, e.g., by combining Meta-RL methods with uncertainty quantification

(van Amersfoort et al., 2021; Osband et al., 2018). An open question is which

kind of approaches and architectures are amenable to fast adaptation at test time,

since, as we have seen above in Figure 9.4a, simply using current algorithms and

continuing to train them via gradient descent is likely not sufficient.

9.3 Building Better Belief Models

Chapters 6-8 rely on belief modelling, so that the agent can take uncertainty into

account when making decisions. To this end, we developed a novel training objective

for a sequential VAE when the reward / transition function changes (Chapter 6)

or when there are other agents in the environment whose strategies are unknown

(Chapter 7). We saw that our belief model adequately captures the belief (Chapters
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6 and 7), allows the agent to act approximately Bayes-optimally (Chapters 6-8),

and can be used for meta-exploration in hyper-state space (Chapter 8).

In the following, we illustrate two concrete open research problems that follow

from our work using sequential VAEs for belief modelling.

Generating Typical Samples A shortcoming of our current VAE models is

that it does not necessarily provide typical samples, but rather outputs expected

values. A typical sample is one that has high probability under the true distribution:

e.g., if we sample a reward function R ∼ qφ(R|τ:t) from the approximate posterior

(by sampling a latent vector and passing it through the decoder), we want the

probability of this sample under the true task distribution p(R|τ:t) to be high. To

understand what this means using an example, consider again the Gridworld from

Section 6.3.1 in Chapter 6, and let us take a closer look at the kind of samples

our belief model produces when sampling from the prior. We know that for this

task distribution, the prior distribution over reward functions is such that one of

the (admissible) cells in the Gridworld has a reward of one (r = 1), and all other

cells have a reward of zero (r = 0). I.e., each sample from the prior distribution of

environments would give us one such reward function. The expected value for the

rewards in each cell is E[r] = 1
20 , since there are 20 cells where a goal can be.

Next, let us have a look at the types of predictions we get for samples from the

meta-learned prior, from a fully trained variBAD VAE model. To this end, we take

samples from the prior and pass it through the VAE decoder to predict rewards

for all cells in the Gridworld. This is what Figure 9.3 shows, once for the case

where we train the model with a Sigmoid at the output (which we used throughout

our experiments in Chapter 6), and once when training with a Softmax (using our

domain knowledge that there can only be one goal at a time).

The first thing we observe is that most samples (in red) are not typical: i.e., they

predict some average reward value for all cells, rather than typical reward functions

where the reward is 1 in one cell and 0 otherwise. The tendency of (vanilla) VAE

decoders to produce outputs that are close to expected values, rather than typical
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Figure 9.3: VAE reward predictions in the Gridworld environment, for
different samples from the prior, when trained with a Sigmoid (left) or trained with
a Softmax (right) at the decoder output layer. We know that the true reward structure is
such that the reward equals 1 at exactly one cell, and 0 otherwise. This figure shows that
the VAE does not output typical samples that reflect this reward structure. Instead, the
decoder predicts values closer to the expected value, which is a known problem for vanilla
VAEs (Dumoulin et al., 2016; Cemgil et al., 2020). It is also not calibrated well, which we
hypothesise is because the VAE overfits to the policy’s induced state distribution (which
is not uniform across all states). This is not problematic for meta-training a policy: all
the information is still there, i.e., which goal positions are still possible and which are
excluded (see Figure 6.3a in Chapter 6), where we see that the posterior goes to zero for
empty cells the agent has visited), It is however problematic if we want the environment
model, e.g., to do planning.

samples, is a known phenomenon in the VAE literature (Dumoulin et al., 2016;

Cemgil et al., 2020), and the reason that VAEs tend to produce blurry images

compared to, e.g., generative adversarial networks (Goodfellow et al., 2014). In

our experiments, this phenomenon was never problematic: all the information that

the policy needs for approximately Bayes-optimal decision-making is still captured

in the approximate belief predicted by the VAE. If, however, we do want to make

use of the decoder, e.g., to do planning, then we do want typical samples. To

this end, follow-up work may adapt solutions from the VAE literature (Cemgil

et al., 2020) to the sequential setting.
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Shifts in the Policy In Chapters 6-8 we train a belief model using a sequential

VAE alongside a policy that conditions on the learned beliefs. Therefore they depend

on each other: the policy learns to interpret the VAE’s latent beliefs, and the VAE

learns to encode the policy’s trajectories. But this also means that if the agent acts

differently at test time, the VAE might not model beliefs appropriately. To test this,

we ran the following experiment. We trained a variBAD model to convergence on the

Gridworld from Section 6.3.1, and evaluated (a) the meta-trained variBAD model,

compared to (b) a hand-coded different Bayes-optimal policy at test time in the first

episode, with the variBAD model taking over from episode 2. Figure 9.4 shows the

behaviour and beliefs (in red) for these two policies. VariBAD does not adequately

model the belief for the hand-coded policy (first row in Fig 9.4b), likely because the

VAE and policy have overfit to each other. This will cause problems if we cannot

guarantee joint deployment (e.g., if we combine learned policies with human agents

that sometimes take over). Possible ways to overcome this is to train ensembles of

VAEs and/or policies, build more robust belief models, continue updating the VAE

at meta-test time if a distribution shift (in the policy or environment) is detected,

or build on innovations of dealing with distribution shifts from other research areas

(Antonova et al., 2020; Lee et al., 2020; Rahimian et al., 2019; Zhang et al., 2020).

(a) VariBAD Model (b) OOD Model in Episode 1

Figure 9.4: Effects of changing the policy at meta-test time. (a) Behaviour and
beliefs for variBAD. (b) Behaviour and beliefs when rolling out a hand-coded policy in
episode 1, and the variBAD policy thereafter. The VAE does not adequately update the
belief for a policy that it has not been meta-trained together with, which in turn means
as the variBAD policy takes over in episode 2 (second row), it does not find the goal.
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Looking forward, we believe that developing more specialised belief models will

be necessary to address new challenges in Fast Adaptation. For example, if we move

towards more complex meta-training distributions such as multi-modal or tailed

distributions, we might exhaust our current belief models’ capabilities. Another

challenge that might occur in some tasks are noisy, distracting, or generally complex

(like image-based) observations. A simple way to deal with this in the variBAD

(Chapter 6) or MeLIBA (Chapter 7) models is to simply backpropagate the RL

loss through the encoder, to inform it what is “useful” to encode in the belief with

regards to the agent. However, this might become more difficult to optimise, we

need to tune more hyper-parameters, and training can be slowed down. Finding

better ways to inform belief modelling of “usefulness”, or dealing with distracting

observations, is an interesting avenue of future research.

With many open research questions, in particular on belief modelling, only time

and new challenging benchmarks will allow us to pinpoint the exact challenges that

are important and which ones should therefore be prioritised.
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10
Conclusion

This thesis addressed the challenge of Fast Adaptation using Meta-Learning, which

we defined and motivated in Chapter 3. We argued that quickly learning new

tasks should be conceptually divided into “task inference“ and “task solving”,

since this might make optimisation easier and the individual parts can specialise

better or be used in downstream tasks. To implement this idea, we proposed a

context-based approach, where the model (e.g., a classifier or a policy) conditions

on a “context vector” that represents the task. In Chapter 5, we first used a

deterministic context that was learned via gradient descent in the Supervised

Learning setting (Section 5.2), to establish that this can indeed improve model

performance and that the context can adequately capture the task. We then moved

to the Reinforcement Learning setting (Section 5.3), where we also observe an

improvement when updating only the context when learning new tasks as opposed

to the entire model as in MAML (Finn et al., 2017a).

Since our ultimate goal was to do Online Adaptation, i.e., have agents that

can perform well from the very first time they interact with an environment to

learn a new task, we then moved beyond the deterministic approach and gradient-

based adaptation. Instead, we introduced Bayesian reasoning over the context

vector, coupled with a model that can update this context vector on-the-fly using
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recurrent neural networks instead of gradient updates. By combining the context-

based idea, ideas from Meta-RL that use recurrent networks that have access to

previous actions and rewards for learning, and approximate variational inference,

we developed methods that can compute approximately Bayes-optimal agents for

the single-agent setting in Chapter 6 and the multi-agent setting in Chapter 7.

Finally, Chapter 8 addressed a big open challenge in Meta-RL: learning with sparse

rewards. This is important since many real world tasks are best formulated with

sparse rewards, like a binary success criterion for completing a task. Compared to

crafting dense reward signals, this is easier, less time-consuming, and less prone to

reward hacking (Abbeel et al., 2004; Hadfield-Menell et al., 2017). We observed

that existing Meta-RL methods can fail entirely if rewards are sparse, and proposed

one way to overcome this by exploring in Hyper-State Space during meta-training.

The contributions in this thesis significantly advance the field of Fast Adaptation

in Meta-RL. The agents developed in this thesis can adapt faster than any previous

methods across a variety of tasks, and we can compute approximately Bayes-optimal

policies for much more complex task distributions than we were previously able

to. Follow-up work inspired by our contributions has looked at using variBAD

(Chapter 6) in the offline RL setting (Dorfman et al., 2021) (which is another

useful step towards real world deployment of RL, see the discussion in Section 1.1),

and work that addresses the same sparse reward problem as HyperX (Chapter 8),

by developing new rewards structures that take into account value of currently

available information (Ambrogioni, 2021).

The work on developing agents that can autonomously learn like humans has

only just begun, and there is exciting research left to be done in the years and

decades to come. We hope that we as a research community can do so responsibly,

possibly using AI to address some of the most pressing challenges of our time, in

a way that benefits our planet and its inhabitants.
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Appendix for Chapter 5, CAVIA

A.1 Implementation - Practical Tips

The context parameters ξ can be added to any network, and do not require direct

access to the rest of the network weights like MAML. In PyTorch this can be

done as follows. To add CAVIA parameters to a network, it is necessary to first

initialise them to zero when the model is initialised:

self.context_params = torch.zeros(size=[self.num_context_params],
requires_grad=True)

Add a way to reset the context parameters to zero (e.g., a method that just

does the above). During the forward pass, add the context parameters to the input

by concatenating it (when using a fully connected network):

x = torch.cat((x, self.context_params.expand(x.shape[0], -1)), dim=1)

(This is for fully connected networks. We refer the reader to our implementation

for how to use FiLM to condition CNNs.) To correctly set the computation graph

for the outer loop, it is necessary to assign the context parameters manually with

their gradient. In the inner loop, compute the gradient:

grad = torch.autograd.grad(task_loss, model.context_params,
create_graph=True)[0]

The option create_graph makes sure that you can take the gradient of grad

again. Then, update the context parameters using one gradient descent step
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model.context_params = model.context_params - lr_inner * grad

If you now do another forward pass and compute the gradient of the model

parameters θ (for the outer loop), these include higher order gradients because grad

above includes gradients of θ, and because we kept the computation graph via the

option grad. To see how to train CAVIA and aggregate the meta-gradient over

several tasks, see our code at https://github.com/lmzintgraf/cavia.

A.2 Experiment Details

Hyperparameter Selection The choice of network architecture/size and context

parameters can be guided by domain knowledge. E.g., for the few-shot image

classification problem, an appropriate model is a deep convolutional model. For the

context parameters, it is important to make sure they are not underparameterised.

CAVIA can deal with larger than necessary context parameters (see Table 5.1),

although it might start overfitting in the inner loop at some point (we have not

experiences this in practise). Regarding learning rates, we always started with an

inner loop learning rate of 1 and the Adam optimiser with the standard learning

rate of 0.001 for the outer loop.

For CNNs, we found that adding the context parameters not at the input

layer, but after several (in our case after the third out of four) convolutions works

best. We believe this is because the lower-level features that the first convolutions

extract are useful for any image classification task, and we only want our task

embedding to influence the activations at the deeper layers. In our experiments

we used a FiLM network with no hidden layers. We tried deeper versions, but

this resulted in inferior performance.

We also tested to add context parameters at several layers instead of only

one. However, in our experience this resulted in similar (regression and RL) or

worse (in the case of CNNs) performance.

https://github.com/lmzintgraf/cavia
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Mini-Imagenet Hyperparameters For Mini-Imagenet, our model takes as

input images of size 84× 84× 3 and has 5 outputs, one for each class. The model

has four modules that each consist of: a 2D convolution with a 3×3 kernel, padding

1 and 128 filters, a batch normalisation layer, a max-pooling operation with kernel

size 2, if applicable a FiLM transformation (only at the third convolution, details

below), and a ReLU activation function. The output size of these four blocks is

5× 5× 128, which we flatten to a vector and feed into one fully connected layer.

The FiLM layer itself is a fully connected layer with inputs φ and a 256-dimensional

output and the identity function at the output. The output is divided into γ

and β, each of dimension 128, which are used to transform the filters that the

convolutional operation outputs. The context vector is of size 100 (other sizes

tested: 50, 200) and is added after the third convolution (other versions tested:

at the first, second or fourth convolution).

The network weights are initialised using He et al. (2015), the bias parameters

are initialised to zero (except at the FiLM layer). We use the Adam optimiser for

the meta-update step with an initial learning rate of 0.001. This learning rate is

annealed every 5, 000 steps by multiplying it by 0.9. The inner learning rate is set

to 0.1 (others tested: 1.0, 0.01). We use a meta batchsize of 4 and 2 tasks for 1-shot

and 5-shot classification respectively. For the batch norm statistics, we always use

the current batch – also during testing. I.e., for 5-way 1-shot classification the batch

size at test time is 5, and we use this batch for normalisation.

A.3 Additional Results: CelebA Image Comple-
tion

The following images show additional results for the CelebA image completion task.
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Figure A.1: Additional image completion results for the CelebA image completion
problem, when k = 10 pixels are given.
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Figure A.2: Additional image completion results for the CelebA image completion
problem, when k = 10 pixels are given.
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Figure A.3: Additional image completion results for the CelebA image completion
problem, when k = 10 pixels are given.
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Appendix for Chapter 6, VariBAD

B.1 Experiments: Gridworld

Here we provide additional remarks and figures for the variBAD Gridworld results

from Section 6.3.1.

Additional Remarks Figure 6.3c visualises how the latent space changes as

the agent interacts with the environment. As we can see, the value of the latent

dimensions starts around mean 0 and variance 1, which is the prior we chose for

the beginning of an episode. Given that the variance increases for a little bit before

the agent finds the goal, this prior might not be optimal. A natural extension of

variBAD is therefore to also learn the prior to match the task at hand.

Comparison to RL2 Figure B.1a shows the learning curves for variBAD and

RL2, in comparison to a multitask policy (which has access to the goal position).

We trained these policies on a horizon of H+ = 4×H = 60, i.e., on a BAMDP in

which the agent has to maximise online return within four episodes. We indicate the

values of a hard-coded Bayes-optimal policy, and a hard-coded posterior sampling

policy using dashed lines.
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(a) Learning curves. (b) Average return per test episode.

Figure B.1: Results for the Gridworld toy environment. (a) Learning curves over
meta-training. (b) Per-episode online return at meta-test time. VariBAD and RL2 were
trained to maximise the online return across 4 episodes. VariBAD can extrapolate to 6
episodes, but RL2 is unstable. Results are averages over 20 seeds (with 95% confidence
intervals for the learning curve).

Figure B.1b shows the end-performance of variBAD and RL2, compared to

the hard-coded optimal policy (which has access to the goal position), Bayes-

optimal policy, and posterior sampling policy. VariBAD and RL2 both closely

approximate the Bayes-optimal solution. By inspecting the individual runs, we

found that variBAD learned the Bayes-optimal solution for 4 out of 20 seeds, RL2

zero times. Both otherwise find solutions that are very close to Bayes-optimal,

with the difference that during the second rollout, the cells left to search are not

all on the shortest path from the starting point.

VariBAD and RL2 were trained on 4, and evaluated on 6 episodes. After the

fourth rollout, we do not fix the latent / hidden state, but continue rolling out

the policy as before. We find that the performance of RL2 drops again after the

fourth episode: this is likely due to instabilities in the 128-dimensional hidden state.

VariBAD’s latent representation, the approximate task posterior, is concentrated

and does not change with more data.
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Figure B.2: Learning curves for the MuJoCo results presented in Section 6.3.3.
The plots show the performance at the N -th rollout. For variBAD and RL2, N = 2. For
PEARL, N = 10. For ProMP and E-MAML, N = 30− 60 (3 gradient steps on rollouts
of length 10-20 depending on the environment).

B.2 Experiments: MuJoCo

In this section we provide the learning curves for the MuJoCo environments from

Section 6.3.3 (Fig B.2) and runtime comparisons. We also provide additional

analyses of how performance scales with the latent dimension (Figure B.3), the

learned agent behaviour (Figure B.4),how the latent space behaves at test time

(Figure B.5), and performance when backpropagating the RL loss through the

VAE encoder (Figure B.6).

Learning Curves Figure B.2 shows the learning curves for the MuJoCo envi-

ronments for all approaches. The multitask and expert policies were trained using

PPO. PEARL (Rakelly et al., 2019) was trained using the reference implementation

provided by the authors. The environments we used are also taken from this

implementation. E-MAML (Stadie et al., 2018) and ProMP (Rothfuss et al., 2019)

were trained using the reference implementation provided by Rothfuss et al. (2019).
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(a) Gridworld. (b) AntGoal.

Figure B.3: Learning curves for different VAE latent dimensions, for the
Gridworld environment (a) and the MuJoCo AntGoal environment (b).

As we can see, PEARL is much more sample efficient in terms of number of

frames than the other methods (Fig B.2), which is because it is an off-policy method.

On-policy vs off-policy training is an orthogonal issue to our contribution, but an

extension of variBAD to off-policy methods has been done in Dorfman et al. (2021).

Doing posterior sampling using off-policy methods also requires PEARL to use a

different encoder (to maintain order invariance of the sampled trajectories) which

is non-recurrent (and hence faster to train, see next section).

For all MuJoCo environments, we trained variBAD with a reward decoder

only (even for Walker, where the dynamics change, we found that this has su-

perior performance).

CheetahDir Test Time Behaviour To get a sense for where these differences

between the different approaches might stem from, consider Figure B.4 which

shows example behaviour of the policies during the first three rollouts in the

HalfCheetahDir environment, for the task “go left". VariBAD and RL2 adapt to

the task online, whereas PEARL acts according to the current sample, which in the

first two rollouts can mean walking in the wrong direction. For a visualisation of

the variBAD latent space at test time for this environment see Figure B.5.
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Figure B.4: Test time behaviour for the task “walk left" in HalfCheetahDir.
The x-axis reflects the agent’s position; the y-axis the environment steps (to be read from
bottom to top). Rows are separate examples, columns the number of rollouts.

Latent Space Visualisation A nice feature of variBAD is that it can give us

insight into the uncertainty of the agent about what task it is in. Figure B.5 shows

the latent space for the HalfCheetahDir tasks "go right" (top row) and "go left"

(bottom row). We observe that the latent mean and log-variance adapt rapidly,

within just a few environment steps (left and middle figures). This is also how

fast the agent adapts to the current task (right figures). As expected, the variance

decreases over time as the agent gets more certain. It is interesting to note that

the values of the latent dimensions swap signs between the two tasks.

Visualising the belief in the reward/state space directly, as we have done in the

Gridworld example, is more difficult for MuJoCo tasks, since we now have continuous

states and actions. What we could do instead, is to additionally train a model that

predicts a ground-truth task description (separate from the main objective and just

for further analysis, since we do not want to use this privileged information for

meta-training). This would give us a more direct sense of what task it thinks it is in.

Runtime Comparison The following are rough estimates of average run-times

for the HalfCheetahDir environment (from what we have experienced; we often ran

multiple experiments per machine, so some of these might be overestimated and

should be mostly understood as giving a relative sense of ordering).
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Figure B.5: Visualisation of the latent space at meta-test time, for the
HalfCheetahDir environment and the tasks "go right" (top) and the task "go left" (bottom).
Left: value of the posterior mean during a single rollout (200 environment steps). The
black line is the average value. Middle: value of the posterior log-variance during a single
rollout. Right: Behaviour of the policy during a single rollout. The x-axis show the
position of the Cheetah, and the y-axis the step (should be read from bottom to top).

• ProMP, E-MAML: 5-8 hours

• variBAD: 48 hours

• RL2: 60 hours

• PEARL: 24 hours

E-MAML and ProMP have the advantage that they do not have a recurrent

part such as variBAD or RL2. Forward and backward passes through recurrent

networks can be slow, especially with large horizons.

Even though both variBAD and RL2 use recurrent modules, we observed that

variBAD is faster than RL2 when training the policy with PPO. This is because we

do not backpropagate the RL-loss through the recurrent part, which allows us to

make the PPO mini-batch updates without having to re-compute the embeddings

(so it saves us a lot of forward/backward passes through the recurrent model). This

difference would likely be less if we used a different RL algorithm which does not

rely on this many forward/backward passes per policy update.
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(a) AntDir (b) AntGoal

Figure B.6: Learning curves for the MuJoCo AntDir (a) and AntGoal
(b) environments, when backpropagating the RL loss through the encoder.
Depending on the task, this can help (a) or hurt (b) performance, and critically depends
on the relative weight between VAE and RL loss.

Ablation Study: Backpropagating the RL loss Through the Encoder In

the main experiments presented in the paper, we do not backpropagate the RL

loss through the encoder. Instead, we alternate between updating the VAE with

the ELBO loss, and updating the policy with the PPO loss (and detaching the

gradient when feeding the belief into the policy). We do so because this performs

sufficiently well, and has two advantages: first, we do not have to calibrate the

relative weighting between the RL and the VAE loss; second, it is much faster in

practice because otherwise we would have to re-compute the belief embedding

for each PPO mini-batch.

Figure B.6 shows the learning curves of the variBAD agent in the AntDir and

AntGoal environments, when backpropagating the RL loss compared to our standard

setting and compared to RL2. These results show that sometimes, combining the

RL and VAE loss can marginally improve performance (Figure B.6a), but it can

also significantly hurt performance (Figure B.6b) if the relative weighting is not

calibrated correctly. In terms of experiment runtime, when backpropagating the RL

loss through the encoder is as slow as RL2 (around 66% slower in these environments).
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B.3 Experiments: Meta-World

Figure B.7 shows the learning curves for the Meta-World ML1 tasks for variBAD

(20 seed averages with 95% confidence intervals). We followed the evaluation

protocol of Yu et al. (2019).

Figure B.7: Learning curves for the different ML1 Meta-World tasks. Shown are the
success rates (top row) and average returns (bottom row) for the training set (first column)
and test set (second column).

B.4 Hyperparameters

We used the PyTorch framework (Paszke et al., 2017) for our experiments. The

hyperparameters for Gridworld, MuJoCo CheetahDir, PointRobot and MetaWorld

ML1-Push can be found in the tables below. For more details, see our reference

implementation at https://github.com/lmzintgraf/varibad.

We used different number of seeds per experiment to balance significance of re-

sults and computational required, due to the inherent randomness/difficulty of differ-

https://github.com/lmzintgraf/varibad
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ent tasks. For the main experiments, we used 20 seeds for Gridworld/Navigation/Meta-

World, and 10 seeds per MuJoCo environment. For the ablation studies, we used

fewer for MuJoCo (5 instead of 10), and Gridworld (15 instead of 20) due to

computational constraints.

Grid Cheetah Point ML1
World Dir Robot Push

max_rollouts_per_task 4 2 3 3
policy_state_embedding_dim 16 64 64 64
policy_latent_embedding_dim 16 64 64 64
norm_state_for_policy True True True True
norm_latent_for_policy True True True True
norm_rew_for_policy True True True True
norm_actions_pre_sampling False True False False
norm_actions_post_sampling False False False False
policy_layers [32] [128, 128] [128, 128, 128] [128, 128, 128]
policy_activation_function tanh tanh tanh tanh
policy_initialisation normc normc normc normc
policy_anneal_lr False False False False
policy ppo ppo ppo ppo
policy_optimiser adam adam adam adam
ppo_num_epochs 2 16 2 2
ppo_num_minibatch 4 4 8 8
ppo_clip_param 0.05 0.1 0.1 0.1
lr_policy 0.0007 0.0007 0.0007 0.0007
num_processes 16 16 16 16
policy_num_steps 60 800 200 200
policy_eps 1e-08 1e-08 1e-08 1e-08
policy_value_loss_coef 0.5 0.5 0.5 0.5
policy_entropy_coef 0.01 0.01 0.001 0.001
policy_gamma 0.95 0.97 0.99 0.99
policy_use_gae True True True True
policy_tau 0.95 0.9 0.9 0.9
use_proper_time_limits False True True True
encoder_max_grad_norm None 1.0 None None
decoder_max_grad_norm None 1.0 None None
lr_vae 0.001 0.001 0.001 0.001
size_vae_buffer 100000 10000 10000 10000
precollect_len 5000 5000 5000 5000
vae_buffer_add_thresh 1 1 1 1
vae_batch_num_trajs 25 10 15 15
tbptt_stepsize None 50 None None
vae_subsample_elbos None 50 None None
vae_subsample_decodes None 50 None None



164 B.4. Hyperparameters

Grid Cheetah Point ML1
World Dir Robot Push

vae_avg_reconstruction_terms False False False False
num_vae_updates 3 1 3 3
pretrain_len 0 0 0 0
kl_weight 0.01 0.1 1.0 1.0
action_embedding_size 0 16 16 16
state_embedding_size 8 32 32 32
reward_embedding_size 8 16 16 16
encoder_layers_before_gru [] [] [] []
encoder_gru_hidden_size 64 128 128 128
encoder_layers_after_gru [] [] [] []
latent_dim 5 5 5 5
decode_reward True True True True
rew_loss_coeff 1.0 1.0 1.0 1.0
input_prev_state False True False False
input_action False True False False
reward_decoder_layers [32, 32] [64, 32] [64, 32] [64, 32]
decode_state False False False False
state_loss_coeff 1.0 1.0 1.0 1.0
state_decoder_layers [32, 32] [64, 32] [64, 32] [64, 32]
disable_kl_term False False False False
rlloss_through_encoder False False False False
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C.1 ELBO Derivation

We derive the ELBO for modelling the future actions of agent i as follows.
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We can then expand the left-hand as follows.
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Going from (C.12) to (C.13), we iterate over timesteps, repeating steps (C.8)-

(C.12) for t + 1, . . . , H. For the right-hand side, we use the previous posterior

as the new prior, q(m,mt|τ:t−1), with univariate Gaussian priors q(m,mt|s0) =

N (0, 1) at the first timestep.
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C.2 Additional Results

Game of Chicken Figure C.1 shows the latent variables for different ablations of

the MeLIBA architecture. Figures C.1a and C.1b show the latent variable per agent

type, when using either only the permanent latent variable m (together with a feed-

forward decoder) or only the temporal latent variable mt (together with a recurrent

decoder). We first observe that both seem to “count” the number of interactions

to some extend, although the permanent latent m does so less pronounced and

consistent. Figure C.1c shows the latent variables at test time, when using a non-

hierarchical version of MeLIBA. We can see that some of the temporal structure is

also captured in m here. This is undesirable, because we want the model to clearly

separate temporal and permanent structure (like MeLIBA does, see Figure 7.2b).

Figure C.2 shows additional learning curves for variations of LIOM and ablations

of MeLIBA. We see that all MeLIBA architectures learn to solve the task, except

when we use only a permanent latent variable m. The reason is a mismatch in model

type: the other agent conditions its actions on the interaction history, however, the

action decoder is not able to model this since it is a feed-forward network conditioned

only on the last state and actions. We also see that LIOM’s (Papoudakis et al.,

2020) performance increases when either backpropagating the RL loss through the

encoder (LIOM (rlloss)), or when using a larger latent dimension (LIOM (10D)).

Still, the performance is inferior in both these cases. Since the only difference

between MeLIBA and LIOM is that LIOM passes a sample to the policy instead

of the mean and variance, we believe that the noisy inputs this generates for the

policy lead to an instability in training.

Treasure Hunt We use a 10 × 10 grid and the agents can choose from five

discrete actions no-op, left, right, up, down. The rewards are −0.1 if the agents

collide, +0.1 for picking up a coin, +1 for dropping off a coin at the correct bank,

and −1 for dropping off a coin at the wrong bank. If the agents attempt to walk

into a wall or another agent, their action does not get executed and they stay on

the current grid. State transitions are deterministic.
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(a) MeLIBA-m

(b) MeLIBA-mt

(c) MeLIBA-flat

Figure C.1: Latent variables during test rollout, for different MeLIBA architectures.
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Figure C.2: Additional Learning Curves for the Chicken Game.

Figure C.3: Treasure Hunt Learning Curves.

The hard-coded agents go directly to the coin colour they prefer, without avoiding

other-coloured coins or the other agent. If they pick up a coin of the wrong colour,

they drop it off at the correct bank.

Figure C.3 shows the learning curves for the Treasure Hunt game, for 3 seeds

per method. All learning curves show a 95% confidence intervals in the shaded

areas, across the different seeds.

To classify agent type from latent variables for Figure 7.3c, we fit a Logistic

Regression Classifier using the scikit-learn Python package. Per trained model,

we use 80 test rollouts for fitting the classifier, and show the test accuracy on
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Method Chicken Game
(10M Frames)

Treasure Hunt
(25M Frames)

MeLIBA 2-3 5
MeLIBA (m) 1-2 5
RL2 4 12
Feedforward 1 3

Table C.1: Runtimes in Hours

20 rollouts in Figure 7.3c. The shaded areas are one standard deviation across

3 trained models (different seeds).

Runtimes We trained our models using Nvidia Tesla K80 GPUs. Table C.1 shows

the runtimes for the different methods. We typically ran between 1 and 4 experiments

per GPU in parallel, leading to some variation in the runtime. These numbers should

be seen as a rough guide and are useful to compare relative times between methods.

C.3 Implementation Details

Hyperparameters Hyperparameters for MeLIBA are shown in Table C.2. Ad-

ditional notes on the hyperparameters:

• ∗: In the first layer of the encoder, we separately encode the state/action/rew

with a FC layer with output 32/16/16 for the Chicken Game, and 64/16/16

for the Treasure Hunt.

• R: Denotes the (hidden size of the) recurrent layer.

• To Train RL2, we used a recurrent network with hidden size 128 and three

layers.

• We use GRUs as our aggregator in the recurrent parts of the networks.

• We selected the hyperparameters doing a simple linesearch (see Table for the

values we considered).
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Parameter Values Chosen Values
TestedChicken Game Treasure Hunt

Num Training Frames 1e7 2.5e7

Policy

Algorithm PPO PPO
Layers [128, 128] [128, 128]
Non-Linearity tanh tanh
Optimiser RMSProp RMSProp Adam
Learning Rate 7e-4 7e-4 1e-4, 1e-3
Num Epochs 2 2 1, 2, 4
Num Mini-Batches 8 4 2, 4, 8
Value Clip Param 0.1 0.1
Batchsize 2,080 1,600
Value Loss Coefficient 0.5 0.5
Entropy Coefficient 0.2 0.2 0.1, 0.5
Discount Factor 1 1
Tau (for GAE) 0.9 0.9 0.95
Max Grad Norm 0.5 0.5

VAE

Learning Rate 0.001 0.001
Optimiser Adam Adam
Data Buffer 2500 (unique traj) 2500 10000
Batchsize (Num Traj) 50 15
KL weight 0.05 0.05 0, 0.01, 0.1
Pretrain: Num Frames 208,000 32,000
Pretrain: Num Updates 5000 1000
Latent dim, m 2 5 2, 5, 10
Latent dim, mt 2 5 2, 5, 10

Encoder Layers [64∗, 64R,
64, 64mt ]

[96∗, 128R,
64, 64mt ]

Decoder Layers [32m, 64mt ,
64, 64R, 32]

[32m, 64mt ,
64, 64R, 32]

Table C.2: MeLIBA Hyperparameters
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D.1 Additional Background

Randomised Prior Functions In Reinforcement Learning, we can use the fact

that unseen states can be seen as out-of-distribution data of a model that is trained

on all data the agent has seen so far. Getting uncertainty estimates on states can

thus quantify our uncertainty about the value of a state and in turn whether we

have explored these states sufficiently. We can think about why exploration purely

in the state space S (which is shared across tasks) is not enough: if the agent has

explored a state many times in one task and is certain of its value, it should not

necessarily exploit this knowledge in a different task, because this same state could

have a completely different value. We cannot view these as separate exploration

problems however, since we also have to try out different deployed exploration

strategies and combine the information to meta-learn Bayes-optimal behaviour.

Therefore, we want to incentivise the agent to explore in the hyper-state space

S+ = S × B. Only if an environment state together with a specific belief has

been observed sufficiently often to determine its value should the agent trust its

value estimate of that belief-state. This therefore amounts to exploration in a

BAMDP state space, which essentially means trying out different exploration

strategies in the environments of the training distribution. We use Random Network

173
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Distillation (RND) (Osband et al., 2018; Burda et al., 2019b; Ciosek et al., 2020)

to obtain such uncertainty estimates and review them using the formulation of

Ciosek et al. (2020) in the following.

Assume we have set of training data D = {si}Ni=1 of all states the agent has

observed. To get uncertainty estimates, we first fit B predictor networks gj(s)

(j = 1, . . . , B) to a random prior process fj(s) each (a network with randomly

initialised weights, which is fixed and never updated). We then estimate the

uncertainty for a state s∗ as

σ2(s∗) = max(0, σ2
µ(s∗) + βvσ(s∗)− σ2

A), (D.1)

where σ2
µ(s∗) is the sample mean of the squared errors between the B predictor

networks and the prior processes; vσ(s∗) is the sample variance of the squared error.

The first quantifies our uncertainty, whereas the second quantifies our uncertainty

over what our uncertainty is. In practice, B = 1 is typically sufficient and the

second term disappears (Ciosek et al., 2020). The term σ2
A is the aleatoric noise

inherent in the data which is an irreducible constant. In theory, this can be learned

as well and depends on how much information can be extracted about the value of

states and actions from the data. In practice, we set this term to 0.

Given a hyper-state s+
t = (st, bt), an ensemble of B prior networks {f i(s+)}Bi=1

and corresponding predictor networks {hi(s+)}Bi=1, the reward bonus is defined as

rc(s+
t ) = max(0, σmu2(s+

t ) + βvσ(s+
t )− σ2

A) (D.2)

where σmu2(s+
t ) is the sample mean of the squared error between prior and predictor

networks and vσ(s+
t ) is the sample variance of that error.

D.2 Additional Results

In this section we provide additional experimental results. This includes results on

sparse environments previously used in the literature (sparse Meta-World and 2D

navigation), where our baselines already performed well. In addition, we provide

more details and results for the experiments in the main paper. The source code

is available at https://github.com/lmzintgraf/hyperx.

https://github.com/lmzintgraf/hyperx
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Dense Rewards Sparse Rewards
Method Episode Reach Push Pick-Place Reach Push Pick-Place
MAML∗ 10 48 74 12 - - -
PEARL∗ 10 38 71 28 - - -
RL2∗ 10 45 87 24 - - -
E-RL2+ 10 - - - 28 7 -
MetaCURE+ 10 - - - 46 25 -
VariBAD 1 100 100 29 (6/20) 100 100 2 (1/20)
VariBAD 2 100 100 29 100 100 2
HyperX 1 100 100 43 (9/20) 100 100 2 (1/20)
HyperX 2 100 100 43 100 100 2

Table D.1: Meta-test success rates on the ML1 Meta-World benchmark, for
the dense and the sparse reward version. ∗Results taken from Yu et al. (2019).
+Results taken from Zhang et al. (2021). We ran VariBAD and HyperX for 5 random
seeds for dense reach/push, and 20 seeds for dense pick-place. VariBAD and HyperX were
trained to maximise expected online return within 2 episodes. The first (few) episodes
often includes exploratory actions, yet have higher success rate than existing methods
that maximise final episodic return. For the sparse Pick-Place environment, in brackets
we report the number of seeds that learned something.

Meta-World To test how our method scales up to more challenging problem

settings, we evaluate it on the Meta-World benchmark (version 1; Yu et al., 2019),

where a simulated robot arm has to perform tasks. We evaluate our method on the

ML1 benchmark, of which three different versions exist: reach/push/pick-and-place

(in increasing order of complexity). In each of these, task distributions are generated

by varying the starting position of the agent and the goal/object positions.

Each environment has a dense reward function that was designed such that an

agent trained on a single task (i.e., fixed starting/object/goal position) can learn to

solve it. Evaluation is done in terms of success rate (rather than return), which

is a task-specific binary signal indicating whether the task was accomplished (at

any moment during the rollout). Yu et al. (2019) proposed a sparse version of

this benchmark that uses this binary success indicator, rather than the dense

reward, for training. This sparse version is used in Zhang et al. (2021), on

ML1-reach and ML1-push.

The agent is trained on a set of 50 environments and evaluated on unseen
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environments from the same task distribution. In all baselines, the agent has 10

episodes to adapt, and performance is measured in the last rollout. Since we consider

the online adaptation setting where we want the agent has to perform well from

the start, we trained VariBAD and HyperX to maximise online return during the

first two episodes. This is more challenging since it includes exploratory actions.

Table D.1 shows the results for both the dense and sparse versions of ML1.

ML1-reach / ML1-push VariBAD achieves 100% success rate on both the dense

and the sparse version of ML1-reach and ML1-push in the first rollout. Compared

to other existing methods – even MetaCURE (Zhang et al., 2018) which explicitly

tries to deal with sparsity – this is a significant improvement. We confirm in our

experiments that HyperX does not decrease performance and also reaches 100%

success rate on these environments.

ML1-pick-place The environment ML1-pick-place is more challenging, because

the task consists of two steps: picking up an object and placing it somewhere (where

both the object and goal location differ across tasks). Even on the dense version,

existing methods struggle. HyperX achieves state of the art on this task with 44.5%

success rate, suggesting HyperX can help meta-learning even when rewards are

dense. For VariBAD and HyperX we found that our agents either learn the task

near perfectly (and have close to 100% success rate in the first rollout), or not at all.

VariBAD learned something for 6 out of 20 seeds, and HyperX learned something

for 9 out of 20 seeds. For the sparse version of this environment, we only saw some

success for 1/20 seeds for both VariBAD or HyperX.

We suspect that the main challenge in ML1-Pick-Place is the short horizon

(150), which does not give the agent enough time to explore during meta-training.

This is why HyperX can give some improvement even in the dense version. In an

upcoming version of Meta-World (Yu et al., 2019), the horizon will be increased to

200, opening up interesting opportunities for future research on sparse Pick-Place.
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(a) Meta-Test Performance (b) VariBad example rollout (c) HyperX example rollout

Figure D.1: Meta-test performance on Sparse 2D Navigation. (a) Performance
averaged over the task distribution at the end of training. Because PEARL is not
optimising for optimal exploration, it requires more episodes to find the goal. Both
VariBad and HyperX optimise for optimal exploration and are able to quickly find the
goal (b and c). However, VariBad’s exploration is suboptimal, not covering all possible
goal locations equally well (b), explaining the lower performance compared to HyperX.

Sparse 2D Navigation We evaluate on a Point Robot 2D navigation task used

by Gupta et al. (2018), Rakelly et al. (2019), and Humplik et al. (2019). The

agent must navigate to an unknown goal sampled along the border of a semicircle

of radius 1.0, and receives a reward relative to its proximity to the goal when it

is within a goal radius of 0.2. Thus far, only Humplik et al. (2019) successfully

meta-learn to solve this task by meta-training with sparse rewards, though they

rely on privileged information during meta-training (the goal position). The other

methods meta-train with dense rewards and evaluate using sparse rewards. We use

a horizon of 100 here (instead of 20 as in the papers above) to give VariBAD and

HyperX enough time to demonstrate interesting exploratory behaviour.

Figure D.1a shows the performance of PEARL, VariBAD, and HyperX at test

time, when rolling out for 30 episodes. Both VariBAD and HyperX adapt to the task

quickly compared to PEARL, but HyperX reaches slightly lower final performance.

To shed light on these performance differences, Figures D.1b and D.1c visualise

representative example rollouts for the meta-trained VariBAD and HyperX agents.

We picked examples where the target goals are at the end of the semi-circle, which

we found are most difficult for the agents. VariBAD (D.1b) struggles to find the

goal, taking several attempts to reach it. Once the goal is found, it does return to

it but on a sub-optimal trajectory. By contrast, HyperX searches the space of goals

more strategically, and returns to the goal faster in subsequent episodes.
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(a) Learning curves for abla-
tions.

(b) Learning curves for base-
lines.

(c) VariBAD (d) RL2

Figure D.2: Treasure Mountain - Additional Rollouts. Shown are example rollouts
for the final agents of VariBAD and RL2 (Duan et al., 2016; Wang et al., 2016). They
follow the inferior exploration strategy of walking around the circle until the treasure is
found, instead of climbing the mountain to directly observe the treasure and get there
faster.

Treasure Mountain Figure D.2a shows the learning curves for the HyperX,

in comparison to ablating different exploration bonuses. When using only the

hyper-state novelty bonus rhyper, HyperX learns the inferior strategy of walking in

a circle: it has no incentive to go up the mountain early in training (because beliefs

there are meaningless because the VAE has not learned yet to interpret the hint) and

stars avoiding the mountain. When using only the VAE reconstruction error bonus

rerror, the agent learns the superior strategy of walking up the mountain to see the

goal location 70% of the time (7/10 seeds). In contrast, HyperX, which uses both

exploration bonuses, learns the superior strategy for all 10 seeds. Lastly, we tested

VariBAD with a simple state novelty exploration bonus: this again learns the inferior

circle-walking strategy only, because it quickly learns to avoid the mountain top.

Figure D.2b shows the learning curves for HyperX, VariBAD, as well as additional

baselines RL2 (Duan et al., 2016; Wang et al., 2016) and the Belief Learning method

of Humplik et al. (2019). Both these baselines also only learn the inferior circle-

walking strategy, because the correct incentives for meta-exploration are missing.

Figures D.2c and D.2d show meta-test time behaviour of VariBAD and RL2:

both methods learn to walk in a circle until the goal is found. This was consistent

across all (10) seeds.
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(a) Belief Oracle. (b) HyperX
(c) Bad Policy

Figure D.3: HalfCheetahDir: additional results. Learning curves for the Belief
Oracle (a) and HyperX (b), with and without reward bonus, averaged over 20 seeds.
Figure (c) shows the behaviour of a policy which failed to learn Bayes-optimal behaviour.
We observe such behaviour often when training HyperX with the reward bonus on the
hyper-states only, rhyper(b, s).

(a) Online Return at Test Time (b) Learning curves (Ep 1) (c) Learning Curves (Ep 1-6)

Figure D.4: Sparse AntGoal: additional plots. (a) Return per episode at meta-test
time (standard error shaded). RL2 and PEARL do not learn to solve the task and achieve
a reward of around -150 per episode. (b) Learning curve over meta-training for the
online returns in episode 1. (c) Learning curve over meta-training for the online return
accumulated over 6 episodes. Results are averaged over 10 seeds.

Sparse CheetahDir Figure D.3 shows the learning curves for the Sparse Chee-

tahDir experiments, with 95% confidence intervals (over 20 seeds). Fig D.3a shows

this for the Belief Oracle, with different exploration bonuses. Fig D.3b shows this

for HyperX, with different exploration bonuses.

Figure D.3c shows example behaviour of a suboptimal policy at test time. The

agent returns back into the zero-reward zone after realising that the task was not

"go left", but stays in there instead of behaving optimally, which is going further to

the right and into the dense reward area beyond the sparse interval border.
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Sparse MuJoCo AntGoal Figure D.4a shows the returns achieved by the agents

across different episodes. Figures D.4b show the learning curves for the returns

during the first episode, with 95% confidence intervals (shaded areas, 10 seeds).

Figure D.4c shows the combined learning curves, comprising of all 6 episodes,

with 95% confidence intervals (shaded areas, 10 seeds). Figures D.6 and D.5 show

example rollouts for VariBAD and HyperX.

Dense AntGoal We also evaluated HyperX on the dense AntGoal environment.

VariBAD and HyperX were trained to maximise performance within a single episode.

PEARL was trained with the default hyperparameters provided by the open-sourced

code of the authors. The results are:: VariBAD: -123 (Episode 1), HyperX: -127

(Episode 1), PEARL: -200 (Episode 6). This confirms that HyperX does not impact

performance, but that there is also not much room for improvement.
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Figure D.5: HyperX Example Rollouts
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Figure D.6: VariBAD Example Rollouts
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D.3 Implementation Details

Here we provide the environment specifications, runtimes, and hyperparameters.

Treasure Mountain This environment is implemented as follows. The treasure

can be anywhere along a circle of radius 1. Within that circle is a mountain –

implemented as another circle with radius 0.5. The horizon is 100 and there are no

resets. The agent always starts at he bottom of the circle. It receives a reward of

10 when it is within a Euclidean distance of 0.1 within the treasure (the treasure

does not disappear, so it keeps receiving this reward if it stays there). It receives a

penalty for climbing the mountain, given my −5.5 + ||(x, y)||2 where (x, y) is the

agent’s position (the mountain center is 0, 0, and the mountain radius 0.5). If not

at the treasure or on the mountain, the agent gets a timestep penalty of at least −5,

which increases as the agent walks further outside the outer circle (to discourage it

from walking too far). The agent cannot walk outside [−1.5, 1.5] in either direction.

The observations of the agent are 4D and continuous. The first two dimensions

are the agent’s (x, y)-position. The last two dimensions are zero if the agent is

not on the mountain top, and are the (x, y)-coordinates of the treasure when the

agent is on the mountain top (within a radius of 0.1). The agent’s actions are the

(continuous) stepsize it takes in (x, y)-direction, bounded in [−0.1, 0.1].

Multi-Stage Gridworld The layout of this environment is depicted in Fig 8.3.

It consist of three rooms which are of size 3× 3 grid, and corridors that connect

the rooms of length 3. The environment state is the (x, y) position of the agent,

unnormalised. There are five available actions: no-op, up, right, down, left.

Three (initially unknown) goals (G1-G3) are placed in corners of rooms: G1 in

the middle room, G2 in the room that is on the side where G1 was placed, and G3

in the middle room (but not where G1 was placed). The agent always starts in

the middle of the centre room and has H = 50 steps. The goals provide increasing

rewards, i.e. r1 = 1, r2 = 10 and r3 = 100, but are only sequentially unlocked;

G2 (r2) is only available after G1 has been reached; G3 (r3) is only available after
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G2 has been reached. The environment is partially observable (Poupart et al.,

2008; Cai et al., 2009) as the agent only observes its position in the environment

and not which goals are unlocked. If the agent is not on an (available) goal it

gets r = −0.1. When the agent stands on a goal, it keeps receiving the respective

reward while standing there (the goal does not disappear). The best strategy is

to search the first room for G1, then search the appropriate room for G2, and

then return to the middle room to find G3.

Sparse MuJoCo HalfCheetahDir We use the commonly used HalfCheetahDir

Meta-Learning benchmark, and sparsify it as follows. If the agent’s x-position

is within [−5, 5] it only gets the control penalty; otherwise it gets the standard

dense reward comprised of the sum of the control penalty and the 1D velocity

in the correct direction.

Sparse MuJoCo AntGoal We use the commonly used AntGoal Meta-Learning

benchmark (based on code of Rakelly et al. (2019)), and sparsify it as follows.

We extend the environment’s state space by including the x and y-position of

the agent’s torso. In the original AntGoal, the goal is sampled from within a

circle of radius of 3 with a higher chance of the goal being sampled away from

the centre of the circle. Unlike the dense version where the agent receives a dense

goal-related reward at all times, our sparse AntGoal only receives goal-related

rewards when within a radius of 1 of the goal.

The agent receives at all time a control penalty and contact forces penalty.

When outside the goal circle, the agent receives an additional constant negative

reward that is equivalent to the negative goal radius, i.e. −1. When within the

goal circle, the agent receives a reward of 1 for being within the goal circle and

a penalty equivalent to the negative distance to the goal, essentially encouraging

the agent to walk towards the centre of the goal circle.

For the MuJoCo environments, we only used the relevant state information

for the RND hyper-state bonus (the x-axis for HalfCheetahDir, and the x-y-

position for AntGoal).
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Meta-World We use the official version of Meta-World as provided by Yu et al.

(2019) at https://github.com/rlworkgroup/metaworld. As suggested by Yu et al.

(2019) and as tested in Zhang et al. (2021), for the sparse version of this environment,

we use the success criterion which the environment returns, and give the agent

a reward of 0 if success=False and a reward of 1 if success=True. The success

criterion depends on the environment; in ‘Reach’ for example it is true if the agent

put its gripper close to the (initially unknown) goal position, and false otherwise.

For evaluation, we report ‘Success’ if the agent was successful at any moment during

an episode, following the evaluation protocol proposed by Yu et al. (2019).

Runtimes Table D.2 shows the runtimes for our experiments. Unless otherwise

stated, we used a NVIDIA GeForce GTX 1080 GPU. These runtimes should serve

as a rough estimate, and can vary depending on hardware and concurrent processes.

Environment Frames Runtime (ca.)
Treasure Mountain 8e+7 35h
Multi-Stage Gridworld 1e+8 65h (CPU)
Sparse HalfCheetahDir 3e+7 20h (CPU)
Sparse AntGoal 4e+8 65h
Meta-World 5e+7 45h
Sparse 2D Navigation 5e+7 12h

Table D.2: Runtimes

RND Hyperparameter Sensitivity To assess how sensitive HyperX to choices

of hyperparameters that affect the hyperstate exploration bonus, we evaluated it

on a range of different choices, shown in Table D.3. There is little sensitivity to

architecture depth and batchsize, as well as to the output dimension of the RND

networks. Performance is stable for learning rates 10−3−10−6 (possibly because we

use the Adam optimiser), but we found that the best frequency (freq) at which the

RND network is updated to be environment dependent. Performance is sensitive to

the scaling factor (wsi in the table) for the initial prior network weights. We used

https://github.com/rlworkgroup/metaworld


186 D.3. Implementation Details

a scaling factor of 10 in our experiments, and found that too small or too large

scaling factors can hurt performance. An interesting direction for future work is

to find more principled ways to guide the choice of the hyperparameters that are

particularly sensitive to the exploration and across environments.

RND dimout = 32 (default 128) 737
RND dimout = 256 (default 128) 812
RND depth = 1 (default 2) 794
RND depth = 3 (default 2) 814
RND batchsize = 32 (default 128) 856
RND batchsize = 256 (default 128) 867
RND lr = 1e− 2 (default 1e− 4) 108
RND lr = 1e− 3 (default 1e− 4) 883
RND lr = 1e− 5 (default 1e− 4) 845
RND lr = 1e− 6 (default 1e− 4) 766
RND wsi = 1 (default 10) 597
RND wsi = 5 (default 10) 766
RND wsi = 15 (default 10) 533

Table D.3: Additional Sparse CheetahDir Results, for different RND hyperparameter
settings (averaged over three seeds). wsi stands for weight scale initialisation of the fixed
random prior network.

Hyperparameters We train the policy using PPO, and we add the intrinsic

bonus rewards to the extrinsic environment reward and use the sum when learning

with PPO. We normalise the intrinsic and extrinsic rewards separately by dividing

by a rolling estimate of the standard deviation. The next two pages show the

hyperparameters used for the policy, the VAE, and the exploration bonuses.

Hyperparameters were selected using a simple (non-exhaustive) gridsearch.
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